Emilio Varea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3351456/publications.pdf

Version: 2024-02-01

59	2,317 citations	30	46
papers		h-index	g-index
59	59	59	2954
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Population of Prenatally Generated Cells in the Rat Paleocortex Maintains an Immature Neuronal Phenotype into Adulthood. Cerebral Cortex, 2008, 18, 2229-2240.	1.6	105
2	Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. Journal of Psychiatric Research, 2012, 46, 189-197.	1.5	91
3	Upregulation of Polysialylated Neural Cell Adhesion Molecule in the Dorsal Hippocampus after Contextual Fear Conditioning Is Involved in Long-Term Memory Formation. Journal of Neuroscience, 2007, 27, 4552-4561.	1.7	90
4	Chronic Fluoxetine Treatment Increases the Expression of PSA-NCAM in the Medial Prefrontal Cortex. Neuropsychopharmacology, 2007, 32, 803-812.	2.8	90
5	Role of Late Maternal Thyroid Hormones in Cerebral Cortex Development: An Experimental Model for Human Prematurity. Cerebral Cortex, 2010, 20, 1462-1475.	1.6	90
6	Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neuroscience Letters, 2012, 530, 97-102.	1.0	89
7	The Polysialylated Form of the Neural Cell Adhesion Molecule (PSA-NCAM) Is Expressed in a Subpopulation of Mature Cortical Interneurons Characterized by Reduced Structural Features and Connectivity. Cerebral Cortex, 2011, 21, 1028-1041.	1.6	85
8	Rescuing Over-activated Microglia Restores Cognitive Performance in Juvenile Animals of the Dp(16) Mouse Model of Down Syndrome. Neuron, 2020, 108, 887-904.e12.	3.8	82
9	Macrophage migration inhibitory factor is critically involved in basal and fluoxetine-stimulated adult hippocampal cell proliferation and in anxiety, depression, and memory-related behaviors. Molecular Psychiatry, 2011, 16, 533-547.	4.1	81
10	Expression of the transcription factor Pax6 in the adult rat dentate gyrus. Journal of Neuroscience Research, 2005, 81, 753-761.	1.3	79
11	Chronic stressâ€induced alterations in amygdala responsiveness and behavior – modulation by trait anxiety and corticotropinâ€releasing factor systems. European Journal of Neuroscience, 2008, 28, 1836-1848.	1.2	77
12	Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome. Journal of Neural Transmission, 2010, 117, 445-455.	1.4	73
13	Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology, 2012, 37, 1209-1223.	1.3	73
14	PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience, 2005, 136, 435-443.	1.1	71
15	N-methyl-d-aspartate receptor expression during adult neurogenesis in the rat dentate gyrus. Neuroscience, 2007, 144, 855-864.	1.1	71
16	Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule. Behavioural Pharmacology, 2008, 19, 41-49.	0.8	63
17	Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. European Neuropsychopharmacology, 2007, 17, 546-557.	0.3	57
18	Role of the Amygdala in Antidepressant Effects on Hippocampal Cell Proliferation and Survival and on Depression-like Behavior in the Rat. PLoS ONE, 2010, 5, e8618.	1.1	55

#	Article	IF	CITATIONS
19	Inhibitory zinc-enriched terminals in mouse spinal cord. Neuroscience, 2001, 105, 941-947.	1.1	54
20	Divergent impact of the polysialyltransferases ST8Siall and ST8SialV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex. Neuroscience, 2010, 167, 825-837.	1.1	50
21	PSA-NCAM expression in the human prefrontal cortex. Journal of Chemical Neuroanatomy, 2007, 33, 202-209.	1.0	47
22	GABAergic basal forebrain afferents innervate selectively GABAergic targets in the main olfactory bulb. Neuroscience, 2010, 170, 913-922.	1.1	46
23	The Dendritic Spines of Interneurons Are Dynamic Structures Influenced by PSA-NCAM Expression. Cerebral Cortex, 2014, 24, 3014-3024.	1.6	45
24	Distribution of D2 dopamine receptor in the olfactory glomeruli of the rat olfactory bulb. European Journal of Neuroscience, 2005, 22, 1357-1367.	1.2	41
25	Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats. Experimental Neurology, 2008, 214, 97-111.	2.0	40
26	Cells expressing markers of immature neurons in the amygdala of adult humans. European Journal of Neuroscience, 2013, 37, 10-22.	1.2	40
27	Effects of chronic fluoxetine treatment on the rat somatosensory cortex: Activation and induction of neuronal structural plasticity. Neuroscience Letters, 2009, 457, 12-15.	1.0	39
28	Polysialic Acid Is Required for Dopamine D2 Receptor-Mediated Plasticity Involving Inhibitory Circuits of the Rat Medial Prefrontal Cortex. PLoS ONE, 2011, 6, e29516.	1.1	38
29	Altered Distribution of Hippocampal Interneurons in the Murine Down Syndrome Model Ts65Dn. Neurochemical Research, 2015, 40, 151-164.	1.6	34
30	Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients. International Journal of Bipolar Disorders, 2019, 7, 24.	0.8	33
31	PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Frontiers in Neuroscience, 2011, 5, 17.	1.4	31
32	Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiology of Aging, 2009, 30, 808-818.	1.5	30
33	Imaging synaptic zinc release in living nervous tissue. Journal of Neuroscience Methods, 2001, 110, 57-63.	1.3	29
34	Cytochemical techniques for zinc and heavy metals localization in nerve cells. Microscopy Research and Technique, 2002, 56, 318-331.	1.2	26
35	Cranial Pair I: The Olfactory Nerve. Anatomical Record, 2019, 302, 405-427.	0.8	24
36	Characterization of a mouse model overexpressing betaâ€site APPâ€cleaving enzyme 2 reveals a new role for BACE2. Genes, Brain and Behavior, 2010, 9, 160-172.	1.1	23

#	Article	IF	CITATIONS
37	NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons. Frontiers in Cellular Neuroscience, 2017, 11, 166.	1.8	23
38	Synaptic connectivity of serotonergic axons in the olfactory glomeruli of the rat olfactory bulb. Neuroscience, 2010, 169, 770-780.	1.1	21
39	Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn. Neuropeptides, 2012, 46, 29-37.	0.9	21
40	The Circuits of the Olfactory Bulb. The Exception as a Rule. Anatomical Record, 2013, 296, 1401-1412.	0.8	21
41	Capture of extracellular zinc ions by astrocytes. Glia, 2006, 54, 304-315.	2.5	15
42	Migrating neuroblasts of the rostral migratory stream are putative targets for the action of nitric oxide. European Journal of Neuroscience, 2007, 26, 392-402.	1.2	15
43	Characterization of a population of tyrosine hydroxylase-containing interneurons in the external plexiform layer of the rat olfactory bulb. Neuroscience, 2012, 217, 140-153.	1.1	13
44	Astrocytes of the murine model for Down Syndrome Ts65Dn display reduced intracellular ionic zinc. Neurochemistry International, 2014, 75, 48-53.	1.9	12
45	Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats. Neural Plasticity, 2016, 2016, 1-12.	1.0	10
46	CRMP-4 expression in the adult cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica. Developmental Brain Research, 2002, 139, 285-294.	2.1	9
47	Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Frontiers in Neuroanatomy, 2022, 16, 851432.	0.9	9
48	Two types of periglomerular cells in the olfactory bulb of the macaque monkey (Macaca fascicularis). Brain Structure and Function, 2013, 218, 873-887.	1.2	8
49	Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis. Frontiers in Neuroscience, 2016, 10, 75.	1.4	7
50	Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome. Folia Neuropathologica, 2017, 2, 154-160.	0.5	7
51	Semilunar Granule Cells Are the Primary Source of the Perisomatic Excitatory Innervation onto Parvalbumin-Expressing Interneurons in the Dentate Gyrus. ENeuro, 2020, 7, ENEURO.0323-19.2020.	0.9	7
52	Piriform cortex alterations in the Ts65Dn model for down syndrome. Brain Research, 2020, 1747, 147031.	1.1	6
53	Is the postganglionic sympathetic neuron zinc-enriched? A stop-flow nerve crush study on rat sciatic nerve. NeuroReport, 2001, 12, 2247-2250.	0.6	5
54	Distribution of the A3 subunit of the cyclic nucleotide–gated ion channels in the main olfactory bulb of the rat. Neuroscience, 2008, 153, 1164-1176.	1.1	5

EMILIO VAREA

#	Article	lF	CITATIONS
55	Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey. Frontiers in Neuroanatomy, 2015, 9, 28.	0.9	5
56	Alterations in reelin and reelin receptors in Down syndrome. NeuroReport, 2019, 30, 14-18.	0.6	2
57	Morphological alterations in the hippocampus of the Ts65Dn mouse model for Down Syndrome correlate with structural plasticity markers. Histology and Histopathology, 2018, 33, 101-115.	0.5	2
58	Phenotypic characterization of MCP-1 expressing neurons in the rat cerebral cortex. Journal of Chemical Neuroanatomy, 2020, 106, 101785.	1.0	1
59	Cholinergic Senescence in the Ts65Dn Mouse Model for Down Syndrome. Neurochemical Research, 0, ,	1.6	1