Yujie Xiong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3351233/yujie-xiong-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

282 34,662 183 97 h-index g-index citations papers 39,852 7.66 320 12 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
282	Recent Advances in Porous Materials for Photocatalytic CO Reduction <i>Journal of Physical Chemistry Letters</i> , 2022 , 13, 1272-1282	6.4	2
281	Ppm-level Cu dopant on ultrathin Pd nanosheets/TiO2 for highly enhanced photocatalytic alcoholysis of epoxides. <i>Applied Catalysis B: Environmental</i> , 2022 , 121211	21.8	0
280	Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. <i>Chemical Engineering Journal</i> , 2022 , 429, 132217	14.7	5
279	Solar-driven conversion of greenhouse gases toward closing the artificial carbon-cycle loop. <i>Chem Catalysis</i> , 2022 , 2, 226-228		1
278	Structural Reconstruction of Cu O Superparticles toward Electrocatalytic CO Reduction with High C Products Selectivity <i>Advanced Science</i> , 2022 , e2105292	13.6	6
277	Identification and Design of Active Sites on Photocatalysts for the Direct Artificial Carbon Cycle. <i>Accounts of Materials Research</i> , 2022 , 3, 331-342	7·5	6
276	Molybdenum Sulfide Quantum Dots Decorated on TiO2 for Photocatalytic Hydrogen Evolution. <i>ACS Applied Nano Materials</i> , 2022 , 5, 702-709	5.6	1
275	Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO Enabling Infrared Light-Driven Overall Water Splitting <i>Research</i> , 2022 , 2022, 9781453	7.8	1
274	Stacked Plasmonic Metamaterial with Strong Localized Electric Field Enables Highly Efficient Broadband Light-Driven CO Hydrogenation <i>Advanced Materials</i> , 2022 , e2202367	24	5
273	High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO <i>Nature Communications</i> , 2022 , 13, 2806	17.4	7
272	Bioinspiration toward efficient photosynthetic systems: From biohybrids to biomimetics. <i>Chem Catalysis</i> , 2021 , 1, 1367-1367		4
271	Pd-Modified ZnO-Au Enabling Alkoxy Intermediates Formation and Dehydrogenation for Photocatalytic Conversion of Methane to Ethylene. <i>Journal of the American Chemical Society</i> , 2021 , 143, 269-278	16.4	43
270	Efficient Photoelectrochemical Conversion of Methane into Ethylene Glycol by WO3 Nanobar Arrays. <i>Angewandte Chemie</i> , 2021 , 133, 9443-9447	3.6	4
269	Fundamental Insights into Surface Modification of Silicon Material toward Improved Activity and Durability in Photocatalytic Hydrogen Production: A Case Study of Pre-Lithiation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 5542-5548	3.8	3
268	Efficient Photoelectrochemical Conversion of Methane into Ethylene Glycol by WO Nanobar Arrays. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9357-9361	16.4	24
267	Elegant Construction of ZnInS/BiVO Hierarchical Heterostructures as Direct Z-Scheme Photocatalysts for Efficient CO Photoreduction. <i>ACS Applied Materials & Direct Z-Scheme</i> 13, 1509	92 ⁹ 1510	00 ³³
266	Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12742-12746	16.4	24

(2021-2021)

265	Efficient photoelectrochemical CO2 conversion for selective acetic acid production. <i>Science Bulletin</i> , 2021 , 66, 1296-1296	10.6	12
264	Phosphate-induced interfacial electronic engineering in VPO4-Ni2P heterostructure for improved electrochemical water oxidation. <i>Chinese Chemical Letters</i> , 2021 , 33, 452-452	8.1	1
263	Metal Substitution Steering Electron Correlations in Pyrochlore Ruthenates for Efficient Acidic Water Oxidation. <i>ACS Nano</i> , 2021 , 15, 8537-8548	16.7	11
262	IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm in acidic media. <i>Nature Communications</i> , 2021 , 12, 3540	17.4	26
261	Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16085-	1 689 2	37
260	Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. <i>Angewandte Chemie</i> , 2021 , 133, 16221-16228	3.6	4
259	Centromere targeting of Mis18 requires the interaction with DNA and H2A-H2B in fission yeast. <i>Cellular and Molecular Life Sciences</i> , 2021 , 78, 373-384	10.3	О
258	Time-Resolved X-Ray Absorption Spectroscopy: Visualizing the Time Evolution of Photophysics and Photochemistry in Photocatalytic Solar Energy Conversion. <i>Solar Rrl</i> , 2021 , 5, 2000468	7.1	5
257	Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation. <i>Applied Catalysis B: Environmental</i> , 2021 , 284, 119689	21.8	17
256	Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive Photodetection. <i>Nano Letters</i> , 2021 , 21, 120-129	11.5	55
255	Bimetallic oxyhydroxide in situ derived from an Fe2Co-MOF for efficient electrocatalytic oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13271-13278	13	10
254	Electrocatalytic fixation of N2 into NO3Delectron transfer between oxygen vacancies and loaded Au in Nb2O5N nanobelts to promote ambient nitrogen oxidation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 17442-17450	13	6
253	Transparent and flexible resins functionalized by lanthanide-based upconversion nanocrystals. <i>Dalton Transactions</i> , 2021 , 50, 6432-6436	4.3	
252	Fe2O3/Ag/CdS ternary heterojunction photoanode for efficient solar water oxidation. <i>Catalysis Science and Technology</i> , 2021 , 11, 5859-5867	5.5	2
251	Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. <i>Nature Communications</i> , 2021 , 12, 745	17.4	59
250	Vacancy-defect modulated pathway of photoreduction of CO on single atomically thin AgInPS sheets into olefiant gas. <i>Nature Communications</i> , 2021 , 12, 4747	17.4	28
249	Limiting the Uncoordinated N Species in M-N Single-Atom Catalysts toward Electrocatalytic CO Reduction in Broad Voltage Range. <i>Advanced Materials</i> , 2021 , e2104090	24	11
248	Van der waals heterostructures by single cobalt sites-anchored graphene and g-C3N4 nanosheets for photocatalytic syngas production with tunable CO/H2 ratio. <i>Applied Catalysis B: Environmental</i> , 2021 , 295, 120261	21.8	15

247	Ultrastable Cu Catalyst for CO Electroreduction to Multicarbon Liquid Fuels by Tuning C-C Coupling with CuTi Subsurface. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26122-26127	16.4	7
246	Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120559	21.8	2
245	Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. <i>Nano Research</i> , 2021 , 14, 3234-3239	10	6
244	Recent advances in engineering active sites for photocatalytic CO reduction. <i>Nanoscale</i> , 2020 , 12, 121	96 - 1 2 20	1937
243	Visible-Light-Driven Nitrogen Fixation Catalyzed by BiOBr Nanostructures: Enhanced Performance by Oxygen Vacancies. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12430-12439	16.4	107
242	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. <i>Chemical Reviews</i> , 2020 , 120, 12175-12216	68.1	269
241	Catalyst: How Material Chemistry Enables Solar-Driven CO2 Conversion. <i>CheM</i> , 2020 , 6, 1035-1038	16.2	20
240	Boosting Photocatalytic Activity in Cross-Coupling Reactions by Constructing Pd-Oxide Heterostructures. <i>ChemNanoMat</i> , 2020 , 6, 920-924	3.5	2
239	Tracking Mechanistic Pathway of Photocatalytic CO Reaction at Ni Sites Using Operando, Time-Resolved Spectroscopy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5618-5626	16.4	57
238	Switching Light for Site-Directed Spatial Loading of Cocatalysts onto Heterojunction Photocatalysts with Boosted Redox Catalysis. <i>ACS Catalysis</i> , 2020 , 10, 3194-3202	13.1	52
237	Sulfur Atomically Doped Bismuth Nanobelt Driven by Electrochemical Self-Reconstruction for Boosted Electrocatalysis. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1746-1752	6.4	17
236	Oxygen vacancy mediated bismuth stannate ultra-small nanoparticle towards photocatalytic CO2-to-CO conversion. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 119156	21.8	30
235	Metal-free electrocatalysts for nitrogen reduction reaction. <i>EnergyChem</i> , 2020 , 2, 100040	36.9	18
234	Direct Observation of Dynamic Bond Evolution in Single-Atom Pt/C N Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6224-6229	16.4	113
233	Direct Observation of Dynamic Bond Evolution in Single-Atom Pt/C3N4 Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 6283-6288	3.6	11
232	In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold: An absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118470	21.8	26
231	Anchoring Positively Charged Pd Single Atoms in Ordered Porous Ceria to Boost Catalytic Activity and Stability in Suzuki Coupling Reactions. <i>Small</i> , 2020 , 16, e2001782	11	23
230	Photocatalytic CO conversion: What can we learn from conventional CO hydrogenation?. <i>Chemical Society Reviews</i> , 2020 , 49, 6579-6591	58.5	113

229	Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. <i>Nature Communications</i> , 2020 , 11, 4066	17.4	105
228	Design of CuInS2 hollow nanostructures toward CO2 electroreduction. <i>Science China Chemistry</i> , 2020 , 63, 1721-1726	7.9	12
227	Integrating bimetallic AuPd nanocatalysts with a 2D aza-fused Econjugated microporous polymer for light-driven benzyl alcohol oxidation. <i>Chinese Chemical Letters</i> , 2020 , 31, 231-234	8.1	7
226	Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. <i>CheM</i> , 2019 , 5, 2865-2878	16.2	180
225	CeO2-Induced Interfacial Co2+ Octahedral Sites and Oxygen Vacancies for Water Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 6484-6490	13.1	151
224	Designing Highly Efficient and Long-Term Durable Electrocatalyst for Oxygen Evolution by Coupling B and P into Amorphous Porous NiFe-Based Material. <i>Small</i> , 2019 , 15, e1901020	11	36
223	MetalBrganic frameworks for artificial photosynthesis via photoelectrochemical route. <i>Current Opinion in Electrochemistry</i> , 2019 , 17, 114-120	7.2	11
222	Metal-Organic Framework Coating Enhances the Performance of CuO in Photoelectrochemical CO Reduction. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10924-10929	16.4	123
221	Design of atomically dispersed catalytic sites for photocatalytic CO reduction. <i>Nanoscale</i> , 2019 , 11, 11	06 4 . / 110)7,04
220	Time-Dependent Surface Oxidation of Pd Nanocubes and its Role in Controlling Catalytic Performance. <i>ChemNanoMat</i> , 2019 , 5, 878-882	3.5	2
219	Sensors: Development of a Cloud-Based Epidermal MoSe2 Device for Hazardous Gas Sensing (Adv. Funct. Mater. 18/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970122	15.6	1
218	Porous amorphous NiFeOx/NiFeP framework with dual electrocatalytic functions for water		
	electrolysis. <i>Journal of Power Sources</i> , 2019 , 428, 76-81	8.9	19
217	· · · · · · · · · · · · · · · · · · ·	8.9	
217	electrolysis. <i>Journal of Power Sources</i> , 2019 , 428, 76-81 Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under		151
	electrolysis. <i>Journal of Power Sources</i> , 2019 , 428, 76-81 Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7807-7814 Electrocatalysts: 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental	16.4	151
216	electrolysis. <i>Journal of Power Sources</i> , 2019 , 428, 76-81 Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7807-7814 Electrocatalysts: 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application (Adv. Energy Mater. 17/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970057 Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone.	16.4	151 8
216	electrolysis. <i>Journal of Power Sources</i> , 2019 , 428, 76-81 Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7807-7814 Electrocatalysts: 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application (Adv. Energy Mater. 17/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970057 Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. <i>Nature Communications</i> , 2019 , 10, 1779 Dynamic Evolution of Atomically Dispersed Cu Species for CO2 Photoreduction to Solar Fuels. <i>ACS</i>	16.4 21.8 17.4	151 8 83

211	Regulating C-C coupling in thermocatalytic and electrocatalytic CO conversion based on surface science. <i>Chemical Science</i> , 2019 , 10, 7310-7326	9.4	23
210	Photogenerated Charge Separation and Photocatalytic Hydrogen Production of TiO2/Graphene Composite Materials. <i>Acta Chimica Sinica</i> , 2019 , 77, 520	3.3	6
209	Development of a Cloud-Based Epidermal MoSe2 Device for Hazardous Gas Sensing. <i>Advanced Functional Materials</i> , 2019 , 29, 1900138	15.6	54
208	Ethylene/1-Hexene Copolymerization with Modified Ziegler-Natta Catalyst. <i>Chemical Research in Chinese Universities</i> , 2019 , 35, 1089-1094	2.2	2
207	2020 roadmap on pore materials for energy and environmental applications. <i>Chinese Chemical Letters</i> , 2019 , 30, 2110-2122	8.1	69
206	Crystal phase engineering on photocatalytic materials for energy and environmental applications. <i>Nano Research</i> , 2019 , 12, 2031-2054	10	66
205	Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction. <i>Small Methods</i> , 2019 , 3, 1800388	12.8	169
204	Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. <i>Journal of Energy Chemistry</i> , 2019 , 37, 43-57	12	84
203	Surface Modification on Pd Nanostructures for Selective Styrene Oxidation with Molecular Oxygen. <i>ChemNanoMat</i> , 2018 , 4, 467-471	3.5	13
202	Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. <i>Science China Materials</i> , 2018 , 61, 771-805	7.1	115
201	Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting. <i>Angewandte Chemie</i> , 2018 , 130, 3512-3516	3.6	49
200	Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z-Scheme Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3454-3458	16.4	176
199	Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO Reduction: The Role of Electron Transfer. <i>Advanced Materials</i> , 2018 , 30, e1704624	24	254
198	Controlling Au P d Surface on Au Nanocubes for Selective Catalytic Alkyne Semihydrogenation. <i>Particle and Particle Systems Characterization</i> , 2018 , 35, 1700377	3.1	4
197	Steering plasmonic hot electrons to realize enhanced full-spectrum photocatalytic hydrogen evolution. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 453-462	11.3	16
196	Surface and interface design for photocatalytic water splitting. <i>Dalton Transactions</i> , 2018 , 47, 12035-12	2049	13
195	2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. <i>Advanced Materials</i> , 2018 , 30, e1801955	24	147
194	Surface Modification on Pd-TiO Hybrid Nanostructures towards Highly Efficient H Production from Catalytic Formic Acid Decomposition. <i>Chemistry - A European Journal</i> , 2018 , 24, 18398-18402	4.8	10

(2017-2018)

193	Design of Pd{111}-TiO2 interface for enhanced catalytic efficiency towards formic acid decomposition. <i>Science China Chemistry</i> , 2018 , 61, 1123-1127	7.9	2
192	Scalable Fabrication of Highly Active and Durable Membrane Electrodes toward Water Oxidation. <i>Small</i> , 2018 , 14, 1702109	11	17
191	Enhanced O2 reduction on atomically thin Pt-based nanoshells by integrating surface facet, interfacial electronic, and substrate stabilization effects. <i>Nano Research</i> , 2018 , 11, 3313-3326	10	16
190	pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. <i>Nano Research</i> , 2018 , 11, 3193-3204	10	44
189	Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO Reduction through Bridging Ligands. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16514-16520	16.4	134
188	Solar Energy Conversion: 2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting (Adv. Mater. 48/2018). <i>Advanced Materials</i> , 2018 , 30, 1870369	24	17
187	Enabling Visible-Light-Driven Selective CO2 Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H2 Evolution. <i>Angewandte Chemie</i> , 2018 , 130, 16685-16689	3.6	18
186	Enabling Visible-Light-Driven Selective CO Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H Evolution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16447-16451	16.4	153
185	Defect engineering in photocatalytic materials. <i>Nano Energy</i> , 2018 , 53, 296-336	17.1	417
184	Refining Defect States in WO by Mo Doping: A Strategy for Tuning N Activation towards Solar-Driven Nitrogen Fixation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9434-9443	16.4	462
183	Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO to CH. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4486-4492	16.4	317
182	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. <i>Nanoscale</i> , 2017 , 9, 4090-4096	7.7	105
181	Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. <i>Nano Energy</i> , 2017 , 34, 306-312	17.1	36
180	PdPt Alloy Nanocatalysts Supported on TiO: Maneuvering Metal-Hydrogen Interactions for Light-Driven and Water-Donating Selective Alkyne Semihydrogenation. <i>Small</i> , 2017 , 13, 1604173	11	25
179	Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. <i>Nano Research</i> , 2017 , 10, 3396-3406	10	72
178	Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. <i>Advanced Materials</i> , 2017 , 29, 1606570	24	320
177	Defective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Brillsted Acid Sites. <i>Small</i> , 2017 , 13, 1701354	11	44
176	N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. <i>Nano Research</i> , 2017 , 10, 3228-3237	10	68

175	Coordination chemistry in the design of heterogeneous photocatalysts. <i>Chemical Society Reviews</i> , 2017 , 46, 2799-2823	58.5	305
174	Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4206-	4290	142
173	Noble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation. <i>Angewandte Chemie</i> , 2017 , 129, 4270-4274	3.6	48
172	Novel Iron/Cobalt-Containing Polypyrrole Hydrogel-Derived Trifunctional Electrocatalyst for Self-Powered Overall Water Splitting. <i>Advanced Functional Materials</i> , 2017 , 27, 1606497	15.6	255
171	Engineering the surface charge states of nanostructures for enhanced catalytic performance. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1951-1964	7.8	51
170	Plasmonic nanostructures in solar energy conversion. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1008-10)2 / 1.1	107
169	Pt4PdCu0.4 alloy nanoframes as highly efficient and robust bifunctional electrocatalysts for oxygen reduction reaction and formic acid oxidation. <i>Nano Energy</i> , 2017 , 39, 532-538	17.1	84
168	Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. <i>Advanced Materials</i> , 2017 , 29, 1702428	24	211
167	Silicon nanostructures for solar-driven catalytic applications. <i>Nano Today</i> , 2017 , 17, 96-116	17.9	44
166	Facet-Engineered Surface and Interface Design of Photocatalytic Materials. <i>Advanced Science</i> , 2017 , 4, 1600216	13.6	223
165	Highly Crystalline Mesoporous Silicon Spheres for Efficient Visible Photocatalytic Hydrogen Evolution. <i>ChemNanoMat</i> , 2017 , 3, 22-26	3.5	24
164	Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination. <i>Chemical Engineering Journal</i> , 2016 , 283, 351-357	14.7	50
163	A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries. <i>Small</i> , 2016 , 12, 5414-5421	11	41
162	Atomic layer deposition on Pd nanocrystals for forming Pd-TiO2 interface toward enhanced CO oxidation. <i>Progress in Natural Science: Materials International</i> , 2016 , 26, 289-294	3.6	15
161	Photostable Cu 2 O photoelectrodes fabricated by facile Zn-doping electrodeposition. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 15172-15180	6.7	25
160	Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis. <i>Advanced Materials</i> , 2016 , 28, 6959-65	24	200
159	Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. <i>RSC Advances</i> , 2016 , 6, 57446-57463	3.7	147
158	Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays. <i>Nano Energy</i> , 2016 , 24, 87-93	17.1	106

(2015-2016)

157	Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. <i>Nano Research</i> , 2016 , 9, 2662-2671	10	22
156	Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 2077-84	24	154
155	Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays. <i>Angewandte Chemie</i> , 2016 , 128, 4653-4657	3.6	4
154	Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4577-81	16.4	54
153	Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage. <i>ACS Applied Materials & Damage: ACS Applied Materials & Damage: Damage: ACS Applied Materials & Damage: Damage: ACS Applied Materials & Damage: Damage:</i>	9.5	19
152	Cu/TiO2 octahedral-shell photocatalysts derived from metalBrganic framework@semiconductor hybrid structures. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 104-110	6.8	34
151	Boosting Photocatalytic Hydrogen Production of a Metal Drganic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. <i>Angewandte Chemie</i> , 2016 , 128, 9535-9539	3.6	103
150	Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution. <i>Small</i> , 2016 , 12, 1640-8	11	111
149	Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8928-35	16.4	568
148	Incorporation of Pd into Pt Co-Catalysts toward Enhanced Photocatalytic Water Splitting. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 506-511	3.1	22
147	Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9389-93	16.4	366
146	Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. <i>Nano Research</i> , 2016 , 9, 1590-1599	10	81
145	Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6822-8	16.4	111
144	Platinum multicubes prepared by ni(2+) -mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5666-71	16.4	72
143	Toward Enhanced Photocatalytic Oxygen Evolution: Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection. <i>Advanced Materials</i> , 2015 , 27, 3444-52	24	295
142	Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. <i>Chemical Society Reviews</i> , 2015 , 44, 2893-939	58.5	732
141	Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. <i>Chemical Communications</i> , 2015 , 51, 10261-71	5.8	80
140	Metallic Nanostructures for Electronics and Optoelectronics 2015 , 271-301		

139	PdAg alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9390-9394	13	27
138	Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. <i>Nano Research</i> , 2015 , 8, 3621-3629	10	53
137	Recent advances in surface and interface engineering for electrocatalysis. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 1476-1493	11.3	35
136	Surface and Interface Engineering in Photocatalysis. <i>ChemNanoMat</i> , 2015 , 1, 223-239	3.5	101
135	Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts. <i>Nano Research</i> , 2015 , 8, 2789-2799	10	34
134	Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. <i>Nano Research</i> , 2015 , 8, 175-183	10	298
133	Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2425-30	16.4	78
132	Metal-Organic Frameworks: From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis (Adv. Mater. 34/2015). Advanced Materials, 2015 , 27, 5009-5009	24	15
131	A New Cubic Phase for a NaYF4 Host Matrix Offering High Upconversion Luminescence Efficiency. <i>Advanced Materials</i> , 2015 , 27, 5528-33	24	80
130	Platinum Multicubes Prepared by Ni2+-Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. <i>Angewandte Chemie</i> , 2015 , 127, 5758-5763	3.6	17
129	Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled CoreBhell Cocatalysts. <i>Angewandte Chemie</i> , 2015 , 127, 15023-15027	3.6	8
128	Stable Metallic 1T-WS2 Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties. <i>Advanced Materials</i> , 2015 , 27, 4837-44	24	151
127	Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis. <i>Small</i> , 2015 , 11, 3873-89	11	110
126	Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions. <i>Advanced Materials</i> , 2015 , 27, 7025-42	24	84
125	Efficient Coupling of Solar Energy to Catalytic Hydrogenation by Using Well-Designed Palladium Nanostructures. <i>Angewandte Chemie</i> , 2015 , 127, 2455-2460	3.6	19
124	Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14810-4	16.4	119
123	From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. <i>Advanced Materials</i> , 2015 , 27, 5010-6	24	1016
122	Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. <i>Nano Research</i> , 2015 , 8, 2115-2123	10	17

(2014-2015)

121	The nature of photocatalytic "water splitting" on silicon nanowires. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2980-5	16.4	82
120	Large-area synthesis of monolayer WSelbn a SiO//Si substrate and its device applications. <i>Nanoscale</i> , 2015 , 7, 4193-8	7.7	107
119	Composition-dependent activity of Cu P t alloy nanocubes for electrocatalytic CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4134-4138	13	93
118	The Nature of Photocatalytic Water Splitting Ibn Silicon Nanowires. <i>Angewandte Chemie</i> , 2015 , 127, 3023-3028	3.6	7
117	Recent Advances in Two-Dimensional Nanostructures for Catalysis Applications. <i>Science of Advanced Materials</i> , 2015 , 7, 2168-2181	2.3	32
116	Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5107-11	16.4	148
115	Self-assembly of LaF3:Yb,Er/Tm nanoplates into colloidal spheres and tailoring their upconversion emissions with fluorescent dyes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8949-8955	7.1	13
114	Two-dimensional g-C(3)N(4): an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. <i>Chemical Communications</i> , 2014 , 50, 6094-7	5.8	190
113	Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. <i>ACS Nano</i> , 2014 , 8, 10414-25	16.7	303
112	Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 14650-3	16.4	76
111	Semiconductors: A Unique Semiconductor Metal Graphene Stack Design to Harness Charge Flow for Photocatalysis (Adv. Mater. 32/2014). <i>Advanced Materials</i> , 2014 , 26, 5578-5578	24	4
110	Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. <i>Advanced Materials</i> , 2014 , 26, 4783-8	24	310
109	Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12120-4	16.4	380
108	Solvothermal synthesis of ternary Cu2 MoS4 nanosheets: structural characterization at the atomic level. <i>Small</i> , 2014 , 10, 4637-44	11	74
107	Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. <i>Chemical Society Reviews</i> , 2014 , 43, 6288-310	58.5	198
106	A unique semiconductor-metal-graphene stack design to harness charge flow for photocatalysis. <i>Advanced Materials</i> , 2014 , 26, 5689-95	24	116
105	Tunable Oxygen Activation for Catalytic Organic Oxidation: Schottky Junction versus Plasmonic Effects. <i>Angewandte Chemie</i> , 2014 , 126, 3269-3273	3.6	32
104	Designing p-Type SemiconductorMetal Hybrid Structures for Improved Photocatalysis. Angewandte Chemie, 2014 , 126, 5207-5211	3.6	55

103	Surface Polarization Matters: Enhancing the Hydrogen-Evolution Reaction by Shrinking Pt Shells in PtPd©raphene Stack Structures. <i>Angewandte Chemie</i> , 2014 , 126, 12316-12320	3.6	45
102	Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3205-9	16.4	121
101	Rtktitelbild: Surface Polarization Matters: Enhancing the Hydrogen-Evolution Reaction by Shrinking Pt Shells in Ptt dtraphene Stack Structures (Angew. Chem. 45/2014). <i>Angewandte Chemie</i> , 2014 , 126, 12462-12462	3.6	
100	Nanosheets: Solvothermal Synthesis of Ternary Cu2MoS4 Nanosheets: Structural Characterization at the Atomic Level (Small 22/2014). <i>Small</i> , 2014 , 10, 4636-4636	11	2
99	Metal Drganic Frameworks: Integration of an Inorganic Semiconductor with a Metal Drganic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions (Adv. Mater. 28/2014). <i>Advanced Materials</i> , 2014 , 26, 4907-4907	24	1
98	Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands. <i>Nanotechnology</i> , 2013 , 24, 145604	3.4	19
97	Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. <i>Accounts of Chemical Research</i> , 2013 , 46, 1783-94	24.3	495
96	Activation of specific sites on cubic nanocrystals: a new pathway for controlled epitaxial growth towards catalytic applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4228	13	21
95	The role of surface chemistry on the toxicity of ag nanoparticles. <i>Small</i> , 2013 , 9, 2628-38	11	31
94	Synthesis of rhombic hierarchical YFIhanocrystals and their use as upconversion photocatalysts after TiOIzoating. <i>Nanoscale</i> , 2013 , 5, 3030-6	7.7	75
93	Surface facet of palladium nanocrystals: a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3200-7	16.4	247
92	A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. <i>Scientific Reports</i> , 2013 , 3, 2580	4.9	52
91	??????????????. Scientia Sinica Chimica, 2013 , 43, 744-753	1.6	2
90	Identifying structural distortion in doped VO2 with IR spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 7225-8	3.6	12
89	Anisotropic growth of palladium twinned nanostructures controlled by kinetics and their unusual activities in galvanic replacement. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8195		13
88	Facile synthesis of GdBO3 spindle assemblies and microdisks as versatile host matrices for lanthanide doping. <i>CrystEngComm</i> , 2012 , 14, 3959	3.3	20
87	Control over the branched structures of platinum nanocrystals for electrocatalytic applications. <i>ACS Nano</i> , 2012 , 6, 9797-806	16.7	113
86	Controlled synthesis of Gd2(WO4)3 microstructures and their tunable photoluminescent properties after Eu3+/Tb3+ doping. <i>CrystEngComm</i> , 2012 , 14, 7043	3.3	50

(2007-2012)

85	Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. <i>Small</i> , 2012 , 8, 1710-6	11	63
84	Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices. <i>Nanoscale</i> , 2012 , 4, 4416-20	7.7	50
83	Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. <i>Chemical Communications</i> , 2011 , 47, 1580-2	5.8	45
82	Modification of NaYF4:Yb,[email[protected]2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3291-3296	3.8	168
81	Formkontrolle bei der Synthese von Metallnanokristallen: einfache Chemie, komplexe Physik?. <i>Angewandte Chemie</i> , 2009 , 121, 62-108	3.6	389
80	Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 60-103	16.4	4431
79	Cover Picture: Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? (Angew. Chem. Int. Ed. 1/2009). <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 1-1	16.4	276
78	Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. <i>Science</i> , 2009 , 325, 977-81	33.3	617
77	Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. <i>Science</i> , 2009 , 323, 1590-3	33.3	961
76	Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. <i>Nano Letters</i> , 2008 , 8, 97	2-5 1.5	77
75	Adding new functions to organic semiconductor nanowires by assembling metal nanoparticles onto their surfaces. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5395		39
75 74		5-3	39
	their surfaces. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5395 Polymer-induced generation of anatase TiO2 hollow nanostructures. <i>Microporous and Mesoporous</i>	5.3	
74	their surfaces. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5395 Polymer-induced generation of anatase TiO2 hollow nanostructures. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 641-646		20 545
74 73	their surfaces. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5395 Polymer-induced generation of anatase TiO2 hollow nanostructures. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 641-646 Synthesis and optical properties of silver nanobars and nanorice. <i>Nano Letters</i> , 2007 , 7, 1032-6 Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric	11.5	20 545
74 73 72	Polymer-induced generation of anatase TiO2 hollow nanostructures. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 641-646 Synthesis and optical properties of silver nanobars and nanorice. <i>Nano Letters</i> , 2007 , 7, 1032-6 Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 790-4 Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular	11.5	20545234
74 73 72 71	Polymer-induced generation of anatase TiO2 hollow nanostructures. <i>Microporous and Mesoporous Materials</i> , 2008, 112, 641-646 Synthesis and optical properties of silver nanobars and nanorice. <i>Nano Letters</i> , 2007, 7, 1032-6 Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. <i>Angewandte Chemie - International Edition</i> , 2007, 46, 790-4 Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. <i>Angewandte Chemie - International Edition</i> , 2007, 46, 4917-21 Nanocrystals with unconventional shapes—a class of promising catalysts. <i>Angewandte Chemie</i> -	11.5 16.4 16.4	20545234145

67	Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions. <i>Angewandte Chemie</i> , 2007 , 119, 804-808	3.6	81
66	Trimeric Clusters of Silver in Aqueous AgNO3 Solutions and Their Role as Nuclei in Forming Triangular Nanoplates of Silver. <i>Angewandte Chemie</i> , 2007 , 119, 5005-5009	3.6	39
65	Nanokristalle mit ungewfinlichen Formen Leine vielversprechende Katalysatorklasse. <i>Angewandte Chemie</i> , 2007 , 119, 7291-7293	3.6	32
64	A Water-Based Synthesis of Octahedral, Decahedral, and Icosahedral Pd Nanocrystals. <i>Angewandte Chemie</i> , 2007 , 119, 9439-9442	3.6	72
63	Innentitelbild: Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions (Angew. Chem. 5/2007). <i>Angewandte Chemie</i> , 2007 , 119, 650-650	3.6	1
62	Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. <i>Chemical Physics Letters</i> , 2007 , 440, 273-278	2.5	101
61	Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2600		183
60	Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires. <i>Nano Letters</i> , 2007 , 7, 668-75	11.5	259
59	Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15452-3	16.4	116
58	Synthesis and mechanistic study of palladium nanobars and nanorods. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3665-75	16.4	531
57	Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. <i>Nano Letters</i> , 2007 , 7, 2847-53	11.5	381
56	Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates. <i>Advanced Materials</i> , 2006 , 18, 1745-1749	24	452
55	Right bipyramids of silver: a new shape derived from single twinned seeds. <i>Nano Letters</i> , 2006 , 6, 765-8	11.5	331
54	Solution-phase template approach for the synthesis of Cu(2)S nanoribbons. <i>Dalton Transactions</i> , 2006 , 149-51	4.3	19
53	Facile synthesis of gold-silver nanocages with controllable pores on the surface. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14776-7	16.4	389
52	Large-scale fabrication of TiO2 hierarchical hollow spheres. <i>Inorganic Chemistry</i> , 2006 , 45, 3493-5	5.1	225
51	Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. <i>Langmuir</i> , 2006 , 22, 8563-70	4	535
50	Surfactant-directed assembly of [corrected] Pt nanoparticles into colloidal spheres and their use [corrected] as substrates in forming Pt nanorods and nanowires. <i>Small</i> , 2006 , 2, 1340-3	11	72

(2004-2006)

49	Pt Nanoparticles Surfactant-Directed Assembled into Colloidal Spheres and used as Substrates in Forming Pt Nanorods and Nanowires. <i>Small</i> , 2006 , 2, 1399-1399	11	2
48	Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages. <i>Chemical Physics Letters</i> , 2006 , 417, 230-234	2.5	98
47	One-step solution-based catalytic route to fabricate novel alpha-MnO2 hierarchical structures on a large scale. <i>Chemical Communications</i> , 2005 , 918-20	5.8	151
46	Some recent developments in the chemical synthesis of inorganic nanotubes. <i>Chemical Communications</i> , 2005 , 5013-22	5.8	110
45	Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. <i>Nano Letters</i> , 2005 , 5, 1237-42	11.5	368
44	Synthesis of multi-walled and bamboo-like well-crystalline CNx nanotubes with controllable nitrogen concentration ($x = 0.05-1.02$). <i>Inorganic Chemistry</i> , 2005 , 44, 6506-8	5.1	12
43	Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7332-3	16.4	396
42	Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. <i>Nano Letters</i> , 2005 , 5, 2058-62	11.5	475
41	Rational Growth of Various &MnO2 Hierarchical Structures and &MnO2 Nanorods via a Homogeneous Catalytic Route. <i>Crystal Growth and Design</i> , 2005 , 5, 1953-1958	3.5	101
40	Selective growth of ZnO nanostructures with coordination polymers. <i>Nanotechnology</i> , 2005 , 16, 2303-8	3.4	37
39	Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17118-27	16.4	590
38	Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7913-7	16.4	294
37	Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. <i>Angewandte Chemie</i> , 2005 , 117, 8127-8131	3.6	58
36	Structure-direct assembly of hexagonal pencil-like ZnO group whiskers. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 176-180	3.3	24
36 35		3·3 4·8	24 93
	Chemistry, 2004, 177, 176-180 Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide,		
35	Chemistry, 2004, 177, 176-180 Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires. Chemistry - A European Journal, 2004, 10, 654-60 Room-temperature surface-erosion route to ZnO nanorod arrays and urchin-like assemblies.	4.8	93

31	Thermally stable hematite hollow nanowires. <i>Inorganic Chemistry</i> , 2004 , 43, 6540-2	5.1	113
30	Reverse Micelle-assisted Route to Control Diameters of ZnO Nanorods by Selecting Different Precursors. <i>Chemistry Letters</i> , 2003 , 32, 760-761	1.7	18
29	Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. <i>Inorganic Chemistry</i> , 2003 , 42, 8105-9	5.1	296
28	Growth of Well-Aligned EMnO2 Monocrystalline Nanowires Through a Coordination-Polymer-Precursor Route <i>ChemInform</i> , 2003 , 34, no		1
27	Fabrication of self-supported patterns of aligned beta-FeOOH nanowires by a low-temperature solution reaction. <i>Chemistry - A European Journal</i> , 2003 , 9, 4991-6	4.8	97
26	Growth of well-aligned gamma-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route. <i>Chemistry - A European Journal</i> , 2003 , 9, 1645-51	4.8	140
25	Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres. <i>Chemical Physics Letters</i> , 2003 , 382, 180-185	2.5	26
24	From Complex Chains to 1D Metal Oxides: A Novel Strategy to Cu2O Nanowires. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3697-3702	3.4	111
23	A novel approach to carbon hollow spheres and vessels from CCl4 at low temperatures. <i>Chemical Communications</i> , 2003 , 904-5	5.8	63
22	Complexing-reagent assisted synthesis of #Fe and FFe2O3 nanowires under mild conditions. <i>New Journal of Chemistry</i> , 2003 , 27, 588	3.6	24
21	A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant. <i>New Journal of Chemistry</i> , 2003 , 27, 1518	3.6	66
20	A Novel in Situ OxidizationBulfidation Growth Route via self-Purification Process to En2S3 Dendrites. <i>Journal of Solid State Chemistry</i> , 2002 , 166, 336-340	3.3	81
19	Ultrasound-Assisted Self-Regulation Route to Ag Nanorods. <i>Chemistry Letters</i> , 2002 , 31, 98-99	1.7	25
18	In situ micelleEemplateInterface reaction route to CdS nanotubes and nanowires. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3712-3716		165
17	Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. <i>Journal of Materials Chemistry</i> , 2002 , 12, 748-753		181
16	A solvent-reduction and surface-modification technique to morphology control of tetragonal In2S3 nanocrystals. <i>Journal of Materials Chemistry</i> , 2002 , 12, 98-102		11
15	From 2D framework to quasi-1D nanomaterial: preparation, characterization, and formation mechanism of Cu(3)SnS(4) nanorods. <i>Inorganic Chemistry</i> , 2002 , 41, 2953-9	5.1	58
14	Sonochemical Coreduction Route to Single-Crystalline InSb Dendrites. <i>Chemistry Letters</i> , 2001 , 30, 103	8-1 <u>.9</u> 39	1

LIST OF PUBLICATIONS

13	Thermal Route. <i>Journal of Solid State Chemistry</i> , 2001 , 161, 190-196	3.3	44	
12	A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1 以)2 nanocrystallites. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1417-1420		77	
11	Synthesis of MS/TiO2(M = Pb, Zn, Cd) nanocomposites through a mild solgel process. <i>Journal of Materials Chemistry</i> , 2001 , 11, 684-686		29	
10	Synthesis and Formation Mechanism of Bi(Se,S) Nanowires via a Solvothermal Template Process. <i>Chemistry Letters</i> , 2000 , 29, 790-791	1.7	11	
9	Photoelectrochemical oxygen atom transfer enabling efficient selective oxygenation. <i>Science China Chemistry</i> ,1	7.9		
8	Single-atom-based catalysts for photoelectrocatalysis: challenges and opportunities. <i>Journal of Materials Chemistry A</i> ,	13	1	
7	Biosynthetic CdS-Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation. <i>Nano Research</i> ,1	10	2	
6	Defect Engineering in Photocatalytic Methane Conversion. Small Structures,2100147	8.7	8	
5	Cu2NS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. <i>Nano Research</i> ,1	10	13	
4	Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. <i>Nano Research</i> ,1	10	6	
3	Surface Local Polarization Induced by Bismuth-Oxygen Vacancy Pairs Tuning Non-Covalent Interaction for CO2 Photoreduction. <i>Advanced Energy Materials</i> ,2102389	21.8	11	
2	Single PdBx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven CN Coupling. <i>ACS Catalysis</i> ,4481-4490	13.1	3	
1	Unraveling the Role of Interfacial Water Structure in Electrochemical Semihydrogenation of Alkynes. ACS Catalysis, 4840-4847	13.1	5	