Pedro Morais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3351215/publications.pdf Version: 2024-02-01

DEDRO MORAIS

#	Article	IF	CITATIONS
1	A review of image processing methods for fetal head and brain analysis in ultrasound images. Computer Methods and Programs in Biomedicine, 2022, 215, 106629.	2.6	25
2	Structural mechanical simulation to optimize the sensor arm geometry to be implemented on cranial remodeling orthosis. AIP Conference Proceedings, 2022, , .	0.3	0
3	Study of the compression behavior of functionally graded lattice for customized cranial remodeling orthosis. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105191.	1.5	2
4	Assessment of LAA Strain and Thrombus Mobility and Its Impact on Thrombus Resolution—Added-Value of a Novel Echocardiographic Thrombus Tracking Method. Cardiovascular Engineering and Technology, 2022, , 1.	0.7	4
5	Realistic 3D infant head surfaces augmentation to improve AI-based diagnosis of cranial deformities. Journal of Biomedical Informatics, 2022, 132, 104121.	2.5	0
6	Clinical outcomes and thrombus resolution in patients with solid left atrial appendage thrombi: results of a single-center real-world registry. Clinical Research in Cardiology, 2021, 110, 72-83.	1.5	12
7	Assessment of long-term cardiac adaptation in adult patients with type II atrial septal defect. European Radiology, 2021, 31, 1905-1914.	2.3	5
8	Feasibility and Accuracy of Automated Three-Dimensional Echocardiographic Analysis of Left Atrial Appendage for Transcatheter Closure. Journal of the American Society of Echocardiography, 2021, , .	1.2	5
9	Technical Note: Assessment of electromagnetic tracking systems in a surgical environment using ultrasonography and ureteroscopy instruments for percutaneous renal access. Medical Physics, 2020, 47, 19-26.	1.6	17
10	Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images. International Journal of Cardiovascular Imaging, 2019, 35, 881-895.	0.7	10
11	Semiautomatic Estimation of Device Size for Left Atrial Appendage Occlusion in 3-D TEE Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 922-929.	1.7	9
12	Synthetic infant head shapes with deformational plagiocephaly: concept and 3D model parameterization. , 2019, , .		2
13	Kinematic boundary conditions substantially impact in silico ventricular function. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35, e3151.	1.0	19
14	Surfaceâ€based registration between CT and US for imageâ€guided percutaneous renal access – A feasibility study. Medical Physics, 2019, 46, 1115-1126.	1.6	3
15	Semi-automatic aortic valve tract segmentation in 3D cardiac magnetic resonance images using shape-based B-spline explicit active surfaces. , 2019, , .		1
16	Automatic left ventricular segmentation in 4D interventional ultrasound data using a patient-specific temporal synchronized shape prior. , 2019, , .		0
17	Validation of a Novel Software Tool for Automatic Aortic Annular Sizing in Three-Dimensional Transesophageal Echocardiographic Images. Journal of the American Society of Echocardiography, 2018, 31, 515-525.e5.	1.2	17
18	A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography. Medical Image Analysis, 2018, 45, 108-120.	7.0	30

PEDRO MORAIS

#	Article	IF	CITATIONS
19	Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review. Computer Methods and Programs in Biomedicine, 2018, 157, 49-67.	2.6	67
20	Fast Segmentation of the Left Atrial Appendage in 3-D Transesophageal Echocardiographic Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2332-2342.	1.7	14
21	A Novel Interventional Guidance Framework for Transseptal Puncture in Left Atrial Interventions. Lecture Notes in Computer Science, 2018, , 93-101.	1.0	1
22	MITT: Medical Image Tracking Toolbox. IEEE Transactions on Medical Imaging, 2018, 37, 2547-2557.	5.4	24
23	Segmentation of kidney and renal collecting system on 3D computed tomography images. , 2018, , .		3
24	Personalized dynamic phantom of the right and left ventricles based on patient-specific anatomy for echocardiography studies $\hat{a} \in$ "Preliminary results. , 2018, , .		3
25	Automated segmentation of the atrial region and fossa ovalis towards computer-aided planning of inter-atrial wall interventions. Computer Methods and Programs in Biomedicine, 2018, 161, 73-84.	2.6	2
26	A Dual-Modal CT/US Kidney Phantom Model for Image-Guided Percutaneous Renal Access. Lecture Notes in Computational Vision and Biomechanics, 2018, , 378-387.	0.5	1
27	Automatic 3D aortic annulus sizing by computed tomography in the planning of transcatheter aortic valve implantation. Journal of Cardiovascular Computed Tomography, 2017, 11, 25-32.	0.7	24
28	Novel Solutions Applied in Transseptal Puncture: A Systematic Review. Journal of Medical Devices, Transactions of the ASME, 2017, 11, .	0.4	8
29	Fast left ventricle tracking using localized anatomical affine optical flow. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2871.	1.0	20
30	Development of a patientâ€specific atrial phantom model for planning and training of interâ€atrial interventions. Medical Physics, 2017, 44, 5638-5649.	1.6	21
31	Imaging Ischemic and Reperfusion Injury in Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2017, 10, 1520-1523.	2.3	2
32	A competitive strategy for atrial and aortic tract segmentation based on deformable models. Medical Image Analysis, 2017, 42, 102-116.	7.0	16
33	Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging. Physics in Medicine and Biology, 2017, 62, 6899-6919.	1.6	5
34	Fully Automatic 3-D-TEE Segmentation for the Planning of Transcatheter Aortic Valve Implantation. IEEE Transactions on Biomedical Engineering, 2017, 64, 1711-1720.	2.5	16
35	Dense motion field estimation from myocardial boundary displacements. International Journal for Numerical Methods in Biomedical Engineering, 2016, 32, e02758.	1.0	6

Kidney segmentation in 3D CT images using B-Spline Explicit Active Surfaces. , 2016, , .

3

PEDRO MORAIS

#	Article	IF	CITATIONS
37	Cardiovascular magnetic resonance myocardial feature tracking using a non-rigid, elastic image registration algorithm: assessment of variability in a real-life clinical setting. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 24.	1.6	71
38	Improving the robustness of interventional 4D ultrasound segmentation through the use of personalized prior shape models. Proceedings of SPIE, 2015, , .	0.8	1
39	Fast left ventricle tracking in CMR images using localized anatomical affine optical flow. , 2015, , .		3
40	Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation. , 2015, , .		1
41	Computer-aided recognition of dental implants in X-ray images. , 2015, , .		4
42	Robust temporal alignment of multimodal cardiac sequences. , 2015, , .		2
43	Fast automatic myocardial segmentation in 4D cine CMR datasets. Medical Image Analysis, 2014, 18, 1115-1131.	7.0	126
44	Fast Fully Automatic Segmentation of the Myocardium in 2D Cine MR Images. Lecture Notes in Computer Science, 2013, , 71-79.	1.0	5
45	Cardiac Motion and Deformation Estimation from Tagged MRI Sequences Using a Temporal Coherent Image Registration Framework, Lecture Notes in Computer Science, 2013., 316-324.	1.0	11