
Hailong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3350568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	1.3	404
2	Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nature Geoscience, 2014, 7, 308-313.	5.4	324
3	Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 2016, 9, 505-522.	1.3	313
4	Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 2015, 32, 64-91.	1.9	223
5	Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part I: Impact of Drizzle on the Formation and Evolution of Open Cells. Journals of the Atmospheric Sciences, 2009, 66, 3237-3256.	0.6	206
6	Climate response of the South Asian monsoon system to anthropogenic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	173
7	Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geoscientific Model Development, 2013, 6, 765-782.	1.3	169
8	An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2377-2411.	1.3	168
9	Precipitation-generated oscillations in open cellular cloud fields. Nature, 2010, 466, 849-852.	13.7	163
10	The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geoscientific Model Development, 2015, 8, 3379-3392.	1.3	140
11	A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Science Reviews, 2020, 210, 103346.	4.0	139
12	Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmospheric Chemistry and Physics, 2017, 17, 5439-5457.	1.9	133
13	Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part II: The Microphysics and Dynamics of the Boundary Region between Open and Closed Cells. Journals of the Atmospheric Sciences, 2009, 66, 3257-3275.	0.6	129
14	Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, 6205-6223.	1.9	128
15	Marine cloud brightening. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 4217-4262.	1.6	125
16	Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5804-5811.	3.3	120
17	Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. Atmospheric Chemistry and Physics, 2014, 14, 11475-11491.	1.9	115
18	Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophysical Research Letters, 2012, 39, .	1.5	113

#	Article	IF	CITATIONS
19	Uncertainty quantification and parameter tuning in the CAM5 Zhangâ€McFarlane convection scheme and impact of improved convection on the global circulation and climate. Journal of Geophysical Research D: Atmospheres, 2013, 118, 395-415.	1.2	112
20	The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.	1.3	112
21	Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2618-2644.	1.3	105
22	Evaluation of Scalar Advection Schemes in the Advanced Research WRF Model Using Large-Eddy Simulations of Aerosol–Cloud Interactions. Monthly Weather Review, 2009, 137, 2547-2558.	0.5	100
23	Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem. Atmospheric Chemistry and Physics, 2011, 11, 11951-11975.	1.9	99
24	Geoengineering as a design problem. Earth System Dynamics, 2016, 7, 469-497.	2.7	96
25	Using an explicit emission tagging method in global modeling of sourceâ€receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,888.	1.2	92
26	Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus. Atmospheric Chemistry and Physics, 2010, 10, 6347-6362.	1.9	91
27	Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmospheric Chemistry and Physics, 2011, 11, 4237-4249.	1.9	85
28	Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing–Jin–Ji (China) and its nearby surrounding region – Part 1: Aerosol distributions and meteorological features. Atmospheric Chemistry and Physics, 2015, 15, 3257-3275.	1.9	82
29	Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 7491-7514.	1.9	80
30	Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations. Atmospheric Chemistry and Physics, 2012, 12, 1785-1810.	1.9	80
31	Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 2015, 7, 382-411.	1.3	80
32	Constraining the instantaneous aerosol influence on cloud albedo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4899-4904.	3.3	77
33	Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 2017, 17, 4319-4336.	1.9	76
34	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmospheric Chemistry and Physics, 2016, 16, 3525-3561.	1.9	75
35	Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 1191-1204.	1.9	72
36	Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001851.	1.3	68

#	Article	IF	CITATIONS
37	A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters, 2014, 9, 064001.	2.2	67
38	On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 2016, 16, 2765-2783.	1.9	67
39	The roles of cloud drop effective radius and <i>LWP</i> in determining rain properties in marine stratocumulus. Geophysical Research Letters, 2012, 39, .	1.5	66
40	A sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the community atmosphere model CAM5. Atmospheric Chemistry and Physics, 2013, 13, 10969-10987.	1.9	65
41	The DOE E3SM v1.1 Biogeochemistry Configuration: Description and Simulated Ecosystem limate Responses to Historical Changes in Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001766.	1.3	65
42	The role of circulation features on black carbon transport into the Arctic in the Community Atmosphere Model version 5 (CAM5). Journal of Geophysical Research D: Atmospheres, 2013, 118, 4657-4669.	1.2	64
43	How does increasing horizontal resolution in a global climate model improve the simulation of aerosolâ€cloud interactions?. Geophysical Research Letters, 2015, 42, 5058-5065.	1.5	62
44	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 2019, 19, 8591-8617.	1.9	60
45	Biomass burning aerosol transport and vertical distribution over the South Africanâ€Atlantic region. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6391-6415.	1.2	59
46	Global source attribution of sulfate concentration and direct and indirect radiative forcing. Atmospheric Chemistry and Physics, 2017, 17, 8903-8922.	1.9	58
47	Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8448-8468.	1.2	56
48	Effects of aerosols on trade wind cumuli over the Indian Ocean: Model simulations. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 821-843.	1.0	55
49	Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,046.	1.2	53
50	Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2018, 18, 6441-6460.	1.9	51
51	Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 2019, 100, 1511-1528.	1.7	51
52	Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23947-23953.	3.3	51
53	Fast Climate Responses to Aerosol Emission Reductions During the COVIDâ€19 Pandemic. Geophysical Research Letters, 2020, 47, e2020GL089788.	1.5	51
54	A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmospheric Chemistry and Physics, 2011, 11, 9749-9769.	1.9	49

#	Article	IF	CITATIONS
55	Black Carbon Amplifies Haze Over the North China Plain by Weakening the East Asian Winter Monsoon. Geophysical Research Letters, 2019, 46, 452-460.	1.5	49
56	Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 2018, 8, 2107.	1.6	48
57	Understanding processes that control dust spatial distributions with global climate models and satellite observations. Atmospheric Chemistry and Physics, 2020, 20, 13835-13855.	1.9	47
58	Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 7105-7128.	1.9	46
59	Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem. Atmospheric Chemistry and Physics, 2012, 12, 8777-8796.	1.9	43
60	The Climate Response to Emissions Reductions Due to COVIDâ€19: Initial Results From CovidMIP. Geophysical Research Letters, 2021, 48, e2020GL091883.	1.5	43
61	Source Apportionments of Aerosols and Their Direct Radiative Forcing and Longâ€Term Trends Over Continental United States. Earth's Future, 2018, 6, 793-808.	2.4	42
62	Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau. Science of the Total Environment, 2016, 573, 1041-1052.	3.9	41
63	Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7100-7116.	1.2	40
64	Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018. Atmospheric Chemistry and Physics, 2020, 20, 9067-9085.	1.9	40
65	Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 2020, 20, 613-623.	1.9	39
66	Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1899-1918.	1.2	38
67	Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmospheric Chemistry and Physics, 2020, 20, 139-161.	1.9	38
68	Sea spray geoengineering experiments in the geoengineering model intercomparison project (GeoMIP): Experimental design and preliminary results. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,175.	1.2	37
69	Urbanization Effect on Winter Haze in the Yangtze River Delta Region of China. Geophysical Research Letters, 2018, 45, 6710-6718.	1.5	37
70	Constructing a spatiotemporally coherent long-term PM2.5 concentration dataset over China during 1980–2019 using a machine learning approach. Science of the Total Environment, 2021, 765, 144263.	3.9	37
71	Century-long record of black carbon in an ice core from the Eastern Pamirs: Estimated contributions from biomass burning. Atmospheric Environment, 2015, 115, 79-88.	1.9	36
72	Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031626.	1.2	35

#	Article	IF	CITATIONS
73	Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nature Communications, 2022, 13, 959.	5.8	35
74	Seasonal variations and sources of atmospheric polycyclic aromatic hydrocarbons and organochlorine compounds in a high-altitude city: Evidence from four-year observations. Environmental Pollution, 2018, 233, 1188-1197.	3.7	34
75	Climatic Responses to Future Transâ€Arctic Shipping. Geophysical Research Letters, 2018, 45, 9898-9908.	1.5	34
76	Variability, timescales, and nonlinearity in climate responses to black carbon emissions. Atmospheric Chemistry and Physics, 2019, 19, 2405-2420.	1.9	34
77	Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1). Geoscientific Model Development, 2018, 11, 1971-1988.	1.3	33
78	The efficacy of aerosol–cloud radiative perturbations from near-surface emissions in deep open-cell stratocumuli. Atmospheric Chemistry and Physics, 2018, 18, 17475-17488.	1.9	31
79	Tracking Moisture Sources of Precipitation over Central Asia: A Study Based on the Water-Source-Tagging Method. Journal of Climate, 2020, 33, 10339-10355.	1.2	31
80	Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model. Journal of Climate, 2017, 30, 1629-1641.	1.2	30
81	Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability. Cryosphere, 2017, 11, 2595-2609.	1.5	28
82	Impacts of Aerosol Dry Deposition on Black Carbon Spatial Distributions and Radiative Effects in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 2018, 10, 1150-1171.	1.3	28
83	Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3704-3723.	1.2	27
84	Local Radiative Feedbacks Over the Arctic Based on Observed Shortâ€Term Climate Variations. Geophysical Research Letters, 2018, 45, 5761-5770.	1.5	26
85	An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033423.	1.2	26
86	Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic. Nature Communications, 2021, 12, 6048.	5.8	26
87	Trade wind cumuli statistics in clean and polluted air over the Indian Ocean from in situ and remote sensing measurements. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	24
88	On the interaction between marine boundary layer cellular cloudiness and surface heat fluxes. Atmospheric Chemistry and Physics, 2014, 14, 61-79.	1.9	24
89	Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. Environmental Pollution, 2020, 257, 113541.	3.7	24
90	Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6321-6335.	1.2	23

#	Article	IF	CITATIONS
91	Trans-Himalayan Transport of Organochlorine Compounds: Three-Year Observations and Model-Based Flux Estimation. Environmental Science & Technology, 2019, 53, 6773-6783.	4.6	23
92	Process-model simulations of cloud albedo enhancement by aerosols in the Arctic. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20140052.	1.6	21
93	A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8905-8924.	1.2	20
94	Trends and source apportionment of aerosols in Europe during 1980–2018. Atmospheric Chemistry and Physics, 2020, 20, 2579-2590.	1.9	20
95	Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline. Atmospheric Chemistry and Physics, 2020, 20, 4999-5017.	1.9	20
96	Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors. Atmospheric Chemistry and Physics, 2021, 21, 10499-10526.	1.9	20
97	ENSO modulation of summertime tropospheric ozone over China. Environmental Research Letters, 2022, 17, 034020.	2.2	20
98	The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 13097-13113.	1.9	19
99	On Assessing ERA5 and MERRA2 Representations of Coldâ€Air Outbreaks Across the Gulf Stream. Geophysical Research Letters, 2021, 48, e2021GL094364.	1.5	19
100	An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032592.	1.2	18
101	Development and Evaluation of Chemistryâ€Aerosolâ€Climate Model CAM5â€Chemâ€MAM7â€MOSAIC: Global Atmospheric Distribution and Radiative Effects of Nitrate Aerosol. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002346.	1.3	17
102	Aerosol responses to precipitation along North American air trajectories arriving at Bermuda. Atmospheric Chemistry and Physics, 2021, 21, 16121-16141.	1.9	17
103	Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 2022, 15, 2881-2916.	1.3	17
104	Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics, 2015, 15, 12805-12822.	1.9	16
105	Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 2020, 14, 429-444.	1.5	16
106	Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities. Atmospheric Chemistry and Physics, 2022, 22, 9129-9160.	1.9	16
107	New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002266.	1.3	15
108	Projected Aerosol Changes Driven by Emissions and Climate Change Using a Machine Learning Method. Environmental Science & Technology, 2022, 56, 3884-3893.	4.6	15

#	Article	IF	CITATIONS
109	Intensified modulation of winter aerosol pollution in China by El Niño with short duration. Atmospheric Chemistry and Physics, 2021, 21, 10745-10761.	1.9	14
110	Radiative Forcing of Nitrate Aerosols From 1975 to 2010 as Simulated by MOSAIC Module in CESM2â€MAM4. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034809.	1.2	14
111	OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via) Tj ETQq1 1 0. climate model and impacts on clouds. Atmospheric Chemistry and Physics, 2022, 22, 5223-5251.	784314 rg 1.9	gBT /Overlock 14
112	Impact of Anthropogenic Emission Injection Height Uncertainty on Global Sulfur Dioxide and Aerosol Distribution. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4812-4826.	1.2	13
113	Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia. Environmental Pollution, 2021, 273, 115778.	3.7	13
114	Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017. Atmospheric Chemistry and Physics, 2022, 22, 7131-7142.	1.9	13
115	Modeling aerosol effects on shallow cumulus convection under various meteorological conditions observed over the Indian Ocean and implications for development of massâ€flux parameterizations for climate models. Journal of Geophysical Research, 2008, 113, .	3.3	12
116	Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	12
117	Black Carbon Increases Frequency of Extreme ENSO Events. Journal of Climate, 2019, 32, 8323-8333.	1.2	11
118	Simulated aging processes of black carbon and its impact during a severe winter haze event in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 755, 142712.	3.9	11
119	Atmospheric Circulation Patterns Conducive to Severe Haze in Eastern China Have Shifted Under Climate Change. Geophysical Research Letters, 2021, 48, e2021GL095011.	1.5	11
120	Largeâ€eddy simulations of the diurnal cycle of shallow convection and cloudiness over the tropical Indian Ocean. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 643-661.	1.0	9
121	Impact of subgridâ€scale radiative heating variability on the stratocumulusâ€ŧoâ€ŧrade cumulus transition in climate models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4192-4203.	1.2	9
122	The role of carbonaceous aerosols on shortâ€ŧerm variations of precipitation over North Africa. Atmospheric Science Letters, 2016, 17, 407-414.	0.8	9
123	Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds. Journal of Climate, 2018, 31, 3301-3325.	1.2	9
124	E3SMv0â€HiLAT: A Modified Climate System Model Targeted for the Study of High‣atitude Processes. Journal of Advances in Modeling Earth Systems, 2019, 11, 2814-2843.	1.3	9
125	Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. Geophysical Research Letters, 2020, 47, e2020GL088063.	1.5	9
126	Understanding the Cold Season Arctic Surface Warming Trend in Recent Decades. Geophysical Research Letters, 2021, 48, e2021GL094878.	1.5	9

#	Article	IF	CITATIONS
127	Modifications to <scp>WRF</scp> 's dynamical core to improve the treatment of moisture for largeâ€eddy simulations. Journal of Advances in Modeling Earth Systems, 2015, 7, 1627-1642.	1.3	8
128	Aerosol transport pathways and source attribution in China during the COVID-19 outbreak. Atmospheric Chemistry and Physics, 2021, 21, 15431-15445.	1.9	8
129	Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings. Journals of the Atmospheric Sciences, 2022, 79, 73-100.	0.6	8
130	Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1657-1672.	1.2	5
131	Brown Carbon Fuel and Emission Source Attributions to Global Snow Darkening Effect. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	5
132	Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models. Atmospheric Chemistry and Physics, 2017, 17, 2525-2541.	1.9	3
133	The influence of fire aerosols on surface climate and gross primary production in the Energy Exascale Earth System Model (E3SM). Journal of Climate, 2021, , 1-60.	1.2	3
134	Development and Evaluation of an Explicit Treatment of Aerosol Processes at Cloud Scale Within a Multiâ€Scale Modeling Framework (MMF). Journal of Advances in Modeling Earth Systems, 2018, 10, 1663-1679.	1.3	1
135	Diurnal Rainfall Response to the Physiological and Radiative Effects of CO ₂ in Tropical Forests in the Energy Exascale Earth System Model v1. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
136	Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6. Geoscientific Model Development, 2022, 15, 3941-3967.	1.3	1
137	Facilitating International Collaboration on Climate Change Research. Bulletin of the American Meteorological Society, 2020, 101, E650-E654.	1.7	0
138	Understanding Third Pole Atmospheric Dynamics and Land Surface Processes and Their Associations with the Cryosphere, Air Quality, and Climate Change. Advances in Atmospheric Sciences, 2022, 39, 1017-1020.	1.9	0