
Robert J Lipinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3350545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hedgehog Signaling Promotes Prostate Xenograft Tumor Growth. Endocrinology, 2004, 145, 3961-3970.	2.8	262
2	Ethanol-Induced Face-Brain Dysmorphology Patterns Are Correlative and Exposure-Stage Dependent. PLoS ONE, 2012, 7, e43067.	2.5	122
3	Dose- and Route-Dependent Teratogenicity, Toxicity, and Pharmacokinetic Profiles of the Hedgehog Signaling Antagonist Cyclopamine in the Mouse. Toxicological Sciences, 2008, 104, 189-197.	3.1	115
4	The Teratogenic Effects of Prenatal Ethanol Exposure Are Exacerbated by Sonic Hedgehog or Gli2 Haploinsufficiency in the Mouse. PLoS ONE, 2014, 9, e89448.	2.5	106
5	Unique and complimentary activities of the Gli transcription factors in Hedgehog signaling. Experimental Cell Research, 2006, 312, 1925-1938.	2.6	82
6	Functional compensation in Hedgehog signaling during mouse prostate development. Developmental Biology, 2006, 295, 13-25.	2.0	72
7	Cleft lip and palate results from Hedgehog signaling antagonism in the mouse: Phenotypic characterization and clinical implications. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 232-240.	1.6	62
8	Lack of Demonstrable Autocrine Hedgehog Signaling in Human Prostate Cancer Cell Lines. Journal of Urology, 2007, 177, 1179-1185.	0.4	57
9	Sonic Hedgehog regulation of <i>Foxf2</i> promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis. Development (Cambridge), 2017, 144, 2082-2091.	2.5	55
10	Definition of Critical Periods for Hedgehog Pathway Antagonist-Induced Holoprosencephaly, Cleft Lip, and Cleft Palate. PLoS ONE, 2015, 10, e0120517.	2.5	53
11	Genesis of teratogenâ€induced holoprosencephaly in mice. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2010, 154C, 29-42.	1.6	52
12	A Simple and Reliable Method for Early Pregnancy Detection in Inbred Mice. Journal of the American Association for Laboratory Animal Science, 2015, 54, 368-71.	1.2	49
13	Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios. American Journal of Human Genetics, 2020, 107, 124-136.	6.2	48
14	Establishment and characterization of immortalized Gli-null mouse embryonic fibroblast cell lines. BMC Cell Biology, 2008, 9, 49.	3.0	46
15	Cohesin complex-associated holoprosencephaly. Brain, 2019, 142, 2631-2643.	7.6	43
16	Gli2 gene dosage and gene-environment interaction illuminate the etiological complexity of holoprosencephaly. DMM Disease Models and Mechanisms, 2016, 9, 1307-1315.	2.4	41
17	Gene-environment interactions: aligning birth defects research with complex etiology. Development (Cambridge), 2020, 147, .	2.5	31
18	A CCR4-NOT Transcription Complex, Subunit 1, CNOT1, Variant Associated with Holoprosencephaly. American Journal of Human Genetics, 2019, 104, 990-993.	6.2	30

Robert J Lipinski

#	Article	IF	CITATIONS
19	Loss-of-Function Variants in PPP1R12A: From Isolated Sex Reversal to Holoprosencephaly Spectrum and Urogenital Malformations. American Journal of Human Genetics, 2020, 106, 121-128.	6.2	30
20	Sonic hedgehog signaling regulates the expression ofinsulin-like growth factor binding protein-6 during fetal prostate development. Developmental Dynamics, 2005, 233, 829-836.	1.8	29
21	Identification and Characterization of Several Dietary Alkaloids as Weak Inhibitors of Hedgehog Signaling. Toxicological Sciences, 2007, 100, 456-463.	3.1	29
22	Hedgehog pathway responsiveness correlates with the presence of primary cilia on prostate stromal cells. BMC Developmental Biology, 2009, 9, 50.	2.1	26
23	Identification of Hedgehog signaling inhibitors with relevant human exposure by small molecule screening. Toxicology in Vitro, 2010, 24, 1404-1409.	2.4	25
24	Developmental Toxicity Assessment of Piperonyl Butoxide Exposure Targeting Sonic Hedgehog Signaling and Forebrain and Face Morphogenesis in the Mouse: An <i>in Vitro</i> and <i>in Vivo</i> Study. Environmental Health Perspectives, 2019, 127, 107006.	6.0	25
25	Human germline hedgehog pathway mutations predispose to fatty liver. Journal of Hepatology, 2017, 67, 809-817.	3.7	24
26	Characterization of Subtle Brain Abnormalities in a Mouse Model of Hedgehog Pathway Antagonist-Induced Cleft Lip and Palate. PLoS ONE, 2014, 9, e102603.	2.5	23
27	Prenatal exposure to pesticides and risk for holoprosencephaly: a case-control study. Environmental Health, 2020, 19, 65.	4.0	20
28	Identification of sonic hedgehog-regulated genes and biological processes in the cranial neural crest mesenchyme by comparative transcriptomics. BMC Genomics, 2018, 19, 497.	2.8	18
29	A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Developmental Dynamics, 2019, 248, 626-633.	1.8	16
30	Academic Achievement Among Children With Nonsyndromic Orofacial Clefts. Cleft Palate-Craniofacial Journal, 2018, 55, 12-20.	0.9	15
31	Common basis for orofacial clefting and cortical interneuronopathy. Translational Psychiatry, 2018, 8, 8.	4.8	14
32	Identifying environmental risk factors and <scp>gene–environment</scp> interactions in holoprosencephaly. Birth Defects Research, 2021, 113, 63-76.	1.5	14
33	<i>FAT4</i> identified as a potential modifier of orofacial cleft laterality. Genetic Epidemiology, 2021, 45, 721-735.	1.3	14
34	Gene-environment interactions in cortical interneuron development and dysfunction: A review of preclinical studies. NeuroToxicology, 2017, 58, 120-129.	3.0	13
35	Sonic Hedgehog Signaling in Cranial Neural Crest Cells Regulates Microvascular Morphogenesis in Facial Development. Frontiers in Cell and Developmental Biology, 2020, 8, 590539.	3.7	11
36	Developmental malformations resulting from high-dose maternal tamoxifen exposure in the mouse. PLoS ONE, 2021, 16, e0256299.	2.5	11

Robert J Lipinski

#	Article	IF	CITATIONS
37	Examining the developmental toxicity of piperonyl butoxide as a Sonic hedgehog pathway inhibitor. Chemosphere, 2021, 264, 128414.	8.2	10
38	Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway. Cellular Signalling, 2018, 44, 1-9.	3.6	9
39	A Microphysiological Approach to Evaluate Effectors of Intercellular Hedgehog Signaling in Development. Frontiers in Cell and Developmental Biology, 2021, 9, 621442.	3.7	5
40	Gli2 gene-environment interactions contribute to the etiological complexity of holoprosencephaly: evidence from a mouse model. Development (Cambridge), 2016, 143, e1.2-e1.2.	2.5	1
41	Response to Osimitz and Droege, 2021. Chemosphere, 2022, 288, 132598.	8.2	0