Marc A Little

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3350379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	13.6	883
2	Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nature Materials, 2014, 13, 954-960.	27.5	532
3	Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.	27.8	348
4	The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 1909842.	14.9	224
5	Barely porous organic cages for hydrogen isotope separation. Science, 2019, 366, 613-620.	12.6	210
6	Porous Organic Cages for Sulfur Hexafluoride Separation. Journal of the American Chemical Society, 2016, 138, 1653-1659.	13.7	200
7	Acid- and Base-Stable Porous Organic Cages: Shape Persistence and pH Stability via Post-synthetic "Tying―of a Flexible Amine Cage. Journal of the American Chemical Society, 2014, 136, 7583-7586.	13.7	192
8	Styrene Purification by Guest-Induced Restructuring of Pillar[6]arene. Journal of the American Chemical Society, 2017, 139, 2908-2911.	13.7	191
9	Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[<i>n</i>]arene Crystals. Journal of the American Chemical Society, 2018, 140, 6921-6930.	13.7	191
10	Reconstructed covalent organic frameworks. Nature, 2022, 604, 72-79.	27.8	190
11	3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. Journal of the American Chemical Society, 2020, 142, 16842-16848.	13.7	174
12	A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes. Angewandte Chemie - International Edition, 2016, 55, 4327-4331.	13.8	148
13	The effect of solvent choice on the gelation and final hydrogel properties of Fmoc–diphenylalanine. Soft Matter, 2015, 11, 927-935.	2.7	135
14	Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 2016, 7, 12750.	12.8	133
15	High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nature Communications, 2018, 9, 2849.	12.8	131
16	Controlling the Crystallization of Porous Organic Cages: Molecular Analogs of Isoreticular Frameworks Using Shape-Specific Directing Solvents. Journal of the American Chemical Society, 2014, 136, 1438-1448.	13.7	122
17	Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 2017, 9, 17-25.	13.6	122
18	A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nature Materials, 2022, 21, 463-470.	27.5	108

Marc A Little

#	Article	IF	CITATIONS
19	Hydrogels formed from Fmoc amino acids. CrystEngComm, 2015, 17, 8047-8057.	2.6	92
20	A Cubic 3D Covalent Organic Framework with nbo Topology. Journal of the American Chemical Society, 2021, 143, 15011-15016.	13.7	87
21	A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Journal of the American Chemical Society, 2022, 144, 9434-9442.	13.7	77
22	Predicted crystal energy landscapes of porous organic cages. Chemical Science, 2014, 5, 2235-2245.	7.4	73
23	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Liâ€ion Positive Electrode with Ultraâ€High Rate Performance. Advanced Energy Materials, 2021, 11, 2101880.	19.5	73
24	An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.	13.7	70
25	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	11.3	68
26	Guest control of structure in porous organic cages. Chemical Communications, 2014, 50, 9465-9468.	4.1	65
27	Mining predicted crystal structure landscapes with high throughput crystallisation: old molecules, new insights. Chemical Science, 2019, 10, 9988-9997.	7.4	61
28	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	13.6	52
29	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	4.1	52
30	From Concept to Crystals via Prediction: Multi omponent Organic Cage Pots by Social Self‧orting. Angewandte Chemie - International Edition, 2019, 58, 16275-16281.	13.8	52
31	Simple and versatile selective synthesis of neutral and cationic copper(i) N-heterocyclic carbene complexes using an electrochemical procedure. Chemical Communications, 2012, 48, 4887.	4.1	45
32	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	10.3	45
33	Electrochemical Synthesis of a Tetradentate Copper N-Heterocyclic Carbene Calix[4]arene and Its Transmetalation to Palladium: Activity of the Palladium Complex in Suzuki–Miyaura Cross-Coupling. Organometallics, 2013, 32, 570-577.	2.3	42
34	Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chemical Science, 2020, 11, 8744-8756.	7.4	41
35	Inducing Social Self orting in Organic Cages To Tune The Shape of The Internal Cavity. Angewandte Chemie - International Edition, 2020, 59, 16755-16763.	13.8	41
36	Synthesis and Methaneâ€Binding Properties of Disulfide‣inked Cryptophaneâ€0.0.0. Angewandte Chemie - International Edition, 2012, 51, 764-766.	13.8	40

Marc A Little

#	Article	IF	CITATIONS
37	Peripheryâ€Functionalized Porous Organic Cages. Chemistry - A European Journal, 2016, 22, 16547-16553.	3.3	38
38	Crystallography companion agent for high-throughput materials discovery. Nature Computational Science, 2021, 1, 290-297.	8.0	38
39	Ag(I) Organometallic Coordination Polymers and Capsule with Tris-Allyl Cyclotriveratrylene Derivatives. Inorganic Chemistry, 2010, 49, 9486-9496.	4.0	35
40	Cage Doubling: Solvent-Mediated Re-equilibration of a [3 + 6] Prismatic Organic Cage to a Large [6 + 12] Truncated Tetrahedron. Crystal Growth and Design, 2018, 18, 2759-2764.	3.0	34
41	Computational modelling of solvent effects in a prolific solvatomorphic porous organic cage. Faraday Discussions, 2018, 211, 383-399.	3.2	33
42	Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. Journal of the American Chemical Society, 2022, 144, 9893-9901.	13.7	33
43	Chirality as a tool for function in porous organic cages. Nanoscale, 2017, 9, 6783-6790.	5.6	31
44	Iron(ii) complexes of 2,6-di(1H-pyrazol-3-yl)-pyridine derivatives with hydrogen bonding and sterically bulky substituents. Dalton Transactions, 2014, 43, 7577.	3.3	27
45	Isostructural salts of the same complex showing contrasting thermal spin-crossover mediated by multiple phase changes. Chemical Communications, 2013, 49, 6280.	4.1	26
46	A solution-processable dissymmetric porous organic cage. Molecular Systems Design and Engineering, 2018, 3, 223-227.	3.4	26
47	A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes. Angewandte Chemie, 2016, 128, 4399-4403.	2.0	24
48	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie, 2019, 131, 16421-16427.	2.0	23
49	Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage. Crystal Growth and Design, 2019, 19, 3647-3651.	3.0	21
50	Rhodium-catalysed isomerisation/formal 1,3-dipolar cycloaddition cascades to fused-ring heterocycles. Chemical Communications, 2012, 48, 9537.	4.1	20
51	Iron(II) complexes of 2,6-di(1-alkylpyrazol-3-yl)pyridine derivatives – The influence of distal substituents on the spin state of the iron centre. Polyhedron, 2013, 64, 4-12.	2.2	20
52	Organic Cage Dumbbells. Chemistry - A European Journal, 2020, 26, 3718-3722.	3.3	19
53	Modular assembly of porous organic cage crystals: isoreticular quasiracemates and ternary co-crystal. CrystEngComm, 2017, 19, 4933-4941.	2.6	18
54	New coordination polymers with extended arm cyclotriguaiacyclene ligands: 1D chains, and interpenetrating or polycatenating 2D (42.62)(4.62)2 networks. Dalton Transactions, 2011, 40, 12217.	3.3	17

MARC A LITTLE

#	Article	IF	CITATIONS
55	Inducing Social Self‧orting in Organic Cages To Tune The Shape of The Internal Cavity. Angewandte Chemie, 2020, 132, 16898-16906.	2.0	15
56	Nano-assemblies of a soluble conjugated organic polymer and an inorganic semiconductor for sacrificial photocatalytic hydrogen production from water. Nanoscale, 2020, 12, 24488-24494.	5.6	14
57	Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithiumâ€lon Cells. ChemSusChem, 2020, 13, 5571-5579.	6.8	14
58	Hydrogen Isotope Separation Using a Metal–Organic Cage Built from Macrocycles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
59	Tetrakis(methylimidazole) and tetrakis(methylimidazolium) calix[4]arenes: competitive anion binding and deprotonation. Organic and Biomolecular Chemistry, 2012, 10, 2824.	2.8	13
60	Creating porosity in a trianglimine macrocycle by heterochiral pairing. Chemical Communications, 2021, 57, 6141-6144.	4.1	12
61	Control of conformation in α-helix mimicking aromatic oligoamide foldamers through interactions between adjacent side-chains. Organic and Biomolecular Chemistry, 2019, 17, 3861-3867.	2.8	11
62	Organic heterojunctions for direct solar fuel generation. Communications Chemistry, 2020, 3, .	4.5	9
63	A bis(disulfide)-linked offset cryptophane. Chemical Communications, 2013, 49, 1512.	4.1	8
64	Complex thermal expansion properties in a molecular honeycomb lattice. Chemical Communications, 2014, 50, 7601.	4.1	7
65	Inherent Ethyl Acetate Selectivity in a Trianglimine Molecular Solid. Chemistry - A European Journal, 2021, 27, 10589-10594.	3.3	6
66	Organic cage inclusion crystals exhibiting guest-enhanced multiphoton harvesting. CheM, 2021, 7, 3157-3170.	11.7	6
67	Hexasulfanyl analogues of cyclotriveratrylene. Tetrahedron Letters, 2014, 55, 2530-2533.	1.4	5
68	Hydrogen isotope separation using a metalâ€organic cage built from macrocycles. Angewandte Chemie, 0, , .	2.0	2