Michael P R Waligorski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3350316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The radial distribution of dose around the path of a heavy ion in liquid water. International Journal of Radiation Applications and Instrumentation Part D, Nuclear Tracks and Radiation Measurements, 1986, 11, 309-319.	0.6	443
2	The updated ESTRO core curricula 2011 for clinicians, medical physicists and RTTs in radiotherapy/radiation oncology. Radiotherapy and Oncology, 2012, 103, 103-108.	0.3	81
3	Calculation of relative biological effectiveness for proton beams using biological weighting functions. International Journal of Radiation Oncology Biology Physics, 1997, 37, 719-729.	0.4	69
4	Supralinearity of peak 5 and peak 6 in TLD-700. Nuclear Instruments & Methods, 1980, 172, 463-470.	1.2	67
5	Thermoluminescence Efficiency of LiF:Mg,Cu,P (MCP-N) Detectors to Photons, Beta-Electrons, Alpha Particles and Thermal Neutrons. Radiation Protection Dosimetry, 1994, 55, 31-38.	0.4	64
6	The response of the alanine detector after charged-particle and neutron irradiations. International Journal of Radiation Applications and Instrumentation Part A, Applied Radiation and Isotopes, 1989, 40, 923-933.	0.5	40
7	Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow. Radiation Measurements, 2010, 45, 1469-1471.	0.7	36
8	Supralinearity of peak 5 and peak 6 in TLD-700. Nuclear Instruments & Methods, 1980, 175, 48-50.	1.2	35
9	Radon survey in the high natural radiation region of NiÅįka Banja, Serbia. Journal of Environmental Radioactivity, 2007, 92, 165-174.	0.9	35
10	CVD Diamonds as Thermoluminescent Detectors for Medical Applications. Radiation Protection Dosimetry, 2002, 101, 485-488.	0.4	31
11	New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors. Radiation Protection Dosimetry, 2006, 118, 213-218.	0.4	30
12	On the relationship between dose-, energy- and LET-response of thermoluminescent detectors. Radiation Protection Dosimetry, 2006, 119, 15-22.	0.4	28
13	A study of radiation dosimeters based on synthetic HPHT diamond. Diamond and Related Materials, 2007, 16, 191-195.	1.8	28
14	Influence of concentration of magnesium on the dose response and LET-dependence of TL efficiency in LiF:Mg,Cu,P (MCP-N) detectors. Radiation Measurements, 1998, 29, 355-359.	0.7	27
15	Thermoluminescence dosimetry using TL-readers equipped with CCD cameras. Radiation Measurements, 2008, 43, 864-869.	0.7	27
16	High-dose characterization of different LiF phosphors. Radiation Measurements, 2007, 42, 582-585.	0.7	26
17	Modeling the Response of Thermoluminescence Detectors Exposed to Low- and High-LET Radiation Fields. Journal of Radiation Research, 2002, 43, S59-S62.	0.8	24
18	Modelling of the Thermoluminescence Response of LiF:Mg,Cu,P (MCP-N) Detectors after Doses of Low-Energy Photons. Radiation Protection Dosimetry, 1999, 84, 103-107.	0.4	23

MICHAEL P R WALIGORSKI

#	Article	IF	CITATIONS
19	The Fricke dosimeter as a 1-hit detector. International Journal of Radiation Applications and Instrumentation Part D, Nuclear Tracks and Radiation Measurements, 1986, 11, 301-307.	0.6	22
20	Radiosensitivity Parameters for Neoplastic Transformations in C3H10T1/2 Cells. Radiation Research, 1987, 111, 424.	0.7	22
21	Ion recombination and polarity correction factors for a plane–parallel ionization chamber in a proton scanning beam. Medical Physics, 2018, 45, 391-401.	1.6	22
22	Dosimetric Characteristics of LiF:Mg,Cu,P Phosphors - A Track Structure Interpretation. Radiation Protection Dosimetry, 1993, 47, 53-58.	0.4	21
23	Investigation of Efficiency of Thermoluminescence Detectors for Particle Therapy Beams. Radiation Protection Dosimetry, 1997, 70, 501-504.	0.4	20
24	Two-dimensional thermoluminescence dosimetry using planar detectors and a TL reader with CCD camera readout. Radiation Protection Dosimetry, 2006, 120, 129-132.	0.4	20
25	Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system. Physica Medica, 2017, 34, 80-84.	0.4	19
26	Measurement of 2-D dose distributions by large-area thermoluminescent detectors. Radiation Measurements, 2004, 38, 833-837.	0.7	17
27	Novel thermoluminescence foils for 2-D clinical dosimetry, based on CaSO4:Dy. Radiation Measurements, 2010, 45, 719-721.	0.7	17
28	Supralinearity of peak 4 and 5 in thermoluminescent lithium fluoride MTS-N () detectors at different Mg and Ti concentration. Radiation Measurements, 2001, 33, 807-812.	0.7	16
29	A Study of the Thermoluminescent Properties of CVD Diamond Detectors. Physica Status Solidi A, 2002, 193, 470-475.	1.7	16
30	Evidence of low-dose hyper-radiosensitivity in normal cells of cervix cancer patients?. Radiation Protection Dosimetry, 2006, 122, 282-284.	0.4	16
31	Application of Individually Calibrated Solid LiF,Ti (MTS-N) Detectors in Clinical Dosimetry. Radiation Protection Dosimetry, 1999, 85, 377-380.	0.4	15
32	Proton microbeam radiotherapy with scanned pencil-beams – Monte Carlo simulations. Physica Medica, 2015, 31, 621-626.	0.4	15
33	Long-Term Investigation on Self-Irradiation and Sensitivity to Cosmic Rays of TL Detector Types TLD-200, TLD-700, MCP-N and New Phosphate Glass Dosemeter. Radiation Protection Dosimetry, 1996, 66, 135-138.	0.4	14
34	A checklist for reporting of thermoluminescence dosimetry (TLD) measurements. Physics in Medicine and Biology, 1999, 44, L15-L17.	1.6	14
35	2-D dosimetry of a proton radiotherapy beam using large-area LiF:Mg,Cu,P TL detectors. Radiation Measurements, 2008, 43, 977-980.	0.7	14
36	Performance of two commercial electron beam algorithms over regions close to the lung–mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms. Physica Medica, 2014, 30, 147-154.	0.4	14

MICHAEL P R WALIGORSKI

#	Article	IF	CITATIONS
37	Application of IMRT in adjuvant treatment of soft tissue sarcomas of the thigh—Preliminary results. Reports of Practical Oncology and Radiotherapy, 2011, 16, 110-114.	0.3	13
38	Synthetic diamonds as active detectors of ionising radiation. Diamond and Related Materials, 2004, 13, 918-922.	1.8	12
39	Evaluation of risk of secondary cancer occurrence after proton radiotherapy of ocular tumours. Radiation Measurements, 2011, 46, 1944-1947.	0.7	12
40	ESR dosimetry in calibration intercomparisons with high-energy photons and electrons. International Journal of Radiation Applications and Instrumentation Part A, Applied Radiation and Isotopes, 1989, 40, 985-988.	0.5	11
41	Comparison of LiF:Mg,Cu,P. (MCP-N, GR-200A) and Alpha-Al203:C TL Detectors in Short-Term Measurements of Natural Radiation. Radiation Protection Dosimetry, 1996, 66, 157-160.	0.4	11
42	CVD diamond wafers as large-area thermoluminescence detectors for measuring the spatial distribution of dose. Physica Status Solidi A, 2003, 199, 119-124.	1.7	11
43	Assessment of undesirable dose to eye-melanoma patients after proton radiotherapy. Radiation Measurements, 2010, 45, 1441-1444.	0.7	11
44	Two-dimensional dosimetry of radiotherapeutical proton beams using thermoluminescence foils. Radiation Protection Dosimetry, 2007, 126, 185-189.	0.4	10
45	The principles of Katz's cellular track structure radiobiological model. Radiation Protection Dosimetry, 2015, 166, 49-55.	0.4	10
46	Miniature Thermoluminescent Detectors for Dosimetry in Radiotherapy. Radiation Protection Dosimetry, 2002, 101, 473-476.	0.4	9
47	Track structure effects in a study of cell killing in normal human skin fibroblasts. International Journal of Radiation Biology, 2009, 85, 1101-1113.	1.0	9
48	Individual patient shielding for a proton eye therapy facility. Radiation Measurements, 2010, 45, 1127-1129.	0.7	9
49	Analysis of Indoor Radon Data Using Bayesian, Random Binning, and Maximum Entropy Methods. Dose-Response, 2021, 19, 155932582110093.	0.7	9
50	Estimation of the Time Elapsed Between Exposure and Readout Using Peak Ratios of LiF:Mg,Cu,P (MCP-N,GR200A). Radiation Protection Dosimetry, 1999, 85, 149-152.	0.4	8
51	TL efficiency of LiF:Mg,Cu,P (MCP-N) 2-D thermoluminescence detectors to raster-scanned carbon ion beams. Radiation Measurements, 2008, 43, 994-997.	0.7	8
52	Dosimetric properties of TL foils based on LiF:Mg,Cu,P (MCP-N) phosphors for clinical applications. Radiation Measurements, 2010, 45, 716-718.	0.7	8
53	Clinical tests of large area thermoluminescent detectors under radiotherapy beams. Radiation Measurements, 2013, 51-52, 25-30.	0.7	8
54	Studies on the application of CVD diamonds as active detectors of ionising radiation. Physica B: Condensed Matter, 2001, 308-310, 1213-1216.	1.3	7

#	Article	IF	CITATIONS
55	Identification and assessment of elevated exposure to natural radiation in Balkan region (Serbia). Radioprotection, 2009, 44, 919-925.	0.5	7
56	Application of the finite-difference approximation to electrostatic problems in gaseous proportional counters. Nuclear Instruments & Methods, 1975, 124, 413-428.	1.2	6
57	Natural radiation and its hazard in copper ore mines in Poland. Acta Geophysica, 2008, 56, 505-517.	1.0	6
58	Are gamma passing rate and dose–volume histogram QA metrics correlated?. Medical Physics, 2021, 48, 4743-4753.	1.6	6
59	Absolute field distribution in gaseous proportional counters of box-type geometry. Nuclear Instruments & Methods, 1973, 109, 403-405.	1.2	5
60	What Can Solid State Detectors Do for Clinical Dosimetry in Modern Radiotherapy?. Radiation Protection Dosimetry, 1999, 85, 361-366.	0.4	5
61	Proton Irradiation of 7LiF:Mg,Ti Thermoluminescent Detectors: Influence of Dopant Concentration on Dose Response and LET Dependence of TL Efficiency. Radiation Protection Dosimetry, 1999, 84, 179-184.	0.4	5
62	Microdosimetric One Hit Detector Model for Calculation of Dose and Energy Response of Some Solid State Detectors. Radiation Protection Dosimetry, 2002, 99, 381-382.	0.4	5
63	Electronic lab notebooks – a crossroads is passed. Drug Discovery Today, 2003, 8, 1007-1009.	3.2	5
64	On the clinical applicability of large-area 2-D TL dosimetry for verifying small photon radiotherapy beams. Radiation Measurements, 2008, 43, 1004-1007.	0.7	5
65	THE ROLE OF PARTICLE SPECTRA IN MODELING THE RELATIVE BIOLOGICAL EFFECTIVENESS OF PROTON RADIOTHERAPY BEAMS. Radiation Protection Dosimetry, 2019, 183, 251-254.	0.4	5
66	Optimisation of LiF:Mg,Ti Detectors for Dosimetry in Proton Radiotherapy. Radiation Protection Dosimetry, 1999, 85, 367-371.	0.4	4
67	Cellular parameters and RBE-LET dependences for modelling heavy-ion radiotherapy. Radiotherapy and Oncology, 2004, 73, S173-S175.	0.3	4
68	Microdosimetric modelling of the response of thermoluminescence detectors to low- and high-LET ionising radiation. Radiation Protection Dosimetry, 2006, 122, 378-381.	0.4	4
69	Does microwave interstitial hyperthermia prior to high-dose-rate brachytherapy change prostate volume or therapy plan parameters?. International Journal of Hyperthermia, 2015, 31, 568-573.	1.1	4
70	Application of MCP-N (Lif: Mg, Cu, P) TL detectors in monitoring environmental radiation. Nuclear Technology and Radiation Protection, 2004, 19, 20-25.	0.3	4
71	Intercomparison of Gamma Ray, X Ray, and Fast Neutron Dosimetry using Alanine Detectors. Radiation Protection Dosimetry, 1989, , .	0.4	3
72	A simple track structure model of ion beam radiotherapy. Radiation Protection Dosimetry, 2006, 122, 471-474.	0.4	3

#	Article	IF	CITATIONS
73	Evaluation of the relative effectiveness of LiF-based TL detectors for electron radiotherapy beams over the energy range 6–20MeV. Radiation Measurements, 2008, 43, 879-882.	0.7	3
74	The application of amorphous track models to study cell survival in heavy ions beams. Radiation Protection Dosimetry, 2011, 143, 232-236.	0.4	3
75	A TPS kernel for calculating survival vs. depth: distributions in a carbon radiotherapy beam, based on Katz's cellular Track Structure Theory. Radiation Protection Dosimetry, 2015, 166, 347-350.	0.4	3
76	A permanently sealed multiwire proportional chamber with two-dimensional readout for X-ray applications in the region 20–60 keV. Nuclear Instruments & Methods, 1976, 135, 197-202.	1.2	2
77	Environmental Radiometry Around Coal Mining Wastes Using MCP-N (LiF:Mg,Cu,P) Detectors and Gamma-Ray Spectrometry. Radiation Protection Dosimetry, 1996, 66, 161-164.	0.4	2
78	Development of TL dosimeters based on MTS-N (LiF:Mg, Ti) detectors for in vivo dosimetry in a Co-60 beam. Reports of Practical Oncology and Radiotherapy, 1998, 3, 43-47.	0.3	2
79	A TL-based anthropomorphic benchmark for verifying 3-D dose distributions from external electron beams calculated by radiotherapy treatment planning systems. Radiation Protection Dosimetry, 2006, 120, 74-77.	0.4	2
80	TRAINING OF MEDICAL PHYSICISTS AND FORMAL REQUIREMENTS OF RADIOTHERAPY DEPARTMENTS RELATED TO EXPERTISE IN MEDICAL PHYSICS. Radiotherapy and Oncology, 2009, 92, S156.	0.3	2
81	A numerical method to optimise the spatial dose distribution in carbon ion radiotherapy planning. Radiation Protection Dosimetry, 2015, 166, 351-355.	0.4	2
82	Studies of scintillator response to 60 MeV protons in a proton beam imaging system. Nukleonika, 2015, 60, 683-687.	0.3	2
83	Comments on "Dental enamel as an in vivo radiation dosimeter― Medical Physics, 1986, 13, 422-422.	1.6	1
84	Verification of geometry reconstruction and dose calculation modules of the PLATO radiotherapy planing system. Reports of Practical Oncology and Radiotherapy, 2001, 6, 141-147.	0.3	1
85	On a Model-based Approach to Radiation Protection. Radiation Protection Dosimetry, 2002, 99, 439-444.	0.4	1
86	Validation of a Radiotherapy Treatment Planning System using an Anthropomorphic Phantom and MTS-N Thermoluminescent Detectors. Radiation Protection Dosimetry, 2002, 101, 477-480.	0.4	1
87	Cellular parameters for track structure modeling of radiation hazard in space. Advances in Space Research, 2004, 34, 1378-1382.	1.2	1
88	Experimental results on the environmental samples collected around sites in South Serbia, Kosovo and Montenegro where DU weapons were deployed in 1999. Radioactivity in the Environment, 2005, , 1056-1063.	0.2	1
89	Professor Zbigniew Jaworowski – In Memoriam. Dose-Response, 2012, 10, dose-response.1.	0.7	1
90	Summaries of articles in this issue. Journal of Radiological Protection, 2002, 22, .	0.6	1

MICHAEL P R WALIGORSKI

#	Article	IF	CITATIONS
91	The Response of 2D TL Foils After Doses of Co-60 Gamma-ray, 6 MVÂX-ray and 60 MeV Proton Beams Applied in Radiotherapy. Acta Physica Polonica B, Proceedings Supplement, 2013, 6, 1021.	0.0	1
92	Analysis of Biological Effectiveness of Heavy Ions Using Two Microdosimetric Approaches. Radiation Protection Dosimetry, 1990, 31, 303-307.	0.4	1
93	The Hadron Radiotherapy Centre Project at the Institute of Nuclear Physics in Kraków, Poland. Radiotherapy and Oncology, 1995, 37, S64.	0.3	0
94	Evaluation of Effective Dose in Environmental Dosimetry Using Humanoid Phantoms Representing Different Ages and Sex, and LiF:Mg,Ti and LiF:Mg,Cu,P Detectors. Radiation Protection Dosimetry, 1996, 66, 165-166.	0.4	0
95	CVD diamonds as active and passive detectors of ionising radiation. Assessment of their applicability for medical dosimetry. , 0, , .		0
96	Weryfikacja procedur pomiarowych i wdrożenie opracowanego systemu kontroli jakości dla aparatu selectron LDR/MDR. Reports of Practical Oncology and Radiotherapy, 2001, 6, 85-90.	0.3	0
97	DoseÂeffect modifying factors in radiation protectionÂa 1967 National Commission on Radiation Protection document revisited. Journal of Radiological Protection, 2002, 22, A159-A161.	0.6	0
98	DARI to Go Where Radiation Has Gone Before. Physics Today, 2003, 56, 13-14.	0.3	0
99	51 The MAESTRO project framework : goals and status. Radiotherapy and Oncology, 2005, 76, S34.	0.3	0
100	Robert Katz(1917–2011). Radiation Research, 2011, 176, 692-693.	0.7	0
101	1339 poster APPLICATION OF IMRT IN WHOLE-ABDOMEN IRRADIATION OF OVARIAN CANCER. Radiotherapy and Oncology, 2011, 99, S501.	0.3	0
102	372 DEVELOPMENT OF A TWO-DIMENSIONAL DIGITAL TL DOSIMETRY SYSTEM INCORPORATING 2-D TL READERS AND TL FOILS. Radiotherapy and Oncology, 2012, 102, S190.	0.3	0
103	Application of alanine dosimetry in dose assessment for ocular melanoma patients undergoing proton radiotherapy – preliminary results. Nukleonika, 2015, 60, 609-613.	0.3	0
104	Comments on "The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort― Health Physics, 2018, 115, 387-388.	0.3	0
105	Track Structure Analysis of Survival of Two Mouse Lymphoma L5178Y Cell Strains of Different Radiation Sensitivity. Radiation Protection Dosimetry, 1994, 52, 207-210.	0.4	0
106	Professor Ludwik Dobrzyński 1941–2022. International Journal of Radiation Biology, 2022, , 1-2.	1.0	0