Anthony G Letai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3350301/publications.pdf

Version: 2024-02-01

198 29,844 68 167
papers citations h-index g-index

214 214 214 37389 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An <i>In Vivo</i> CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML. Cancer Discovery, 2022, 12, 432-449.	7.7	32
2	Combination therapy targeting $Erk1/2$ and $CDK4/6i$ in relapsed refractory multiple myeloma. Leukemia, 2022, 36, 1088-1101.	3.3	6
3	Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell, 2022, 40, 26-35.	7.7	108
4	Functional Precision Medicine: Putting Drugs on Patient Cancer Cells and Seeing What Happens. Cancer Discovery, 2022, 12, 290-292.	7.7	8
5	Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2022, 7, 51.	7.1	54
6	Apoptosis: Directly Targeted at Last. Journal of Clinical Oncology, 2022, 40, 1693-1695.	0.8	1
7	JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia, 2022, 36, 1499-1507.	3 . 3	6
8	Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell, 2022, 185, 1521-1538.e18.	13.5	63
9	Preclinical Modeling of Leiomyosarcoma Identifies Susceptibility to Transcriptional CDK Inhibitors through Antagonism of E2F-Driven Oncogenic Gene Expression. Clinical Cancer Research, 2022, 28, 2397-2408.	3.2	6
10	IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nature Cancer, 2022, 3, 595-613.	5 . 7	16
11	CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nature Cancer, 2021, 2, 34-48.	5 . 7	48
12	Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term followâ€up from a phase 1b study. American Journal of Hematology, 2021, 96, 208-217.	2.0	95
13	Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Science Advances, 2021, 7, .	4.7	38
14	Apoptotic Blocks in Primary Non-Hodgkin B Cell Lymphomas Identified by BH3 Profiling. Cancers, 2021, 13, 1002.	1.7	9
15	Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Advances, 2021, 5, 2391-2402.	2.5	10
16	Death in the Fas, ELANE. Cell, 2021, 184, 3081-3083.	13.5	2
17	Identification of Novel Therapeutic Targets for Fibrolamellar Carcinoma Using Patient-Derived Xenografts and Direct-from-Patient Screening. Cancer Discovery, 2021, 11, 2544-2563.	7.7	27
18	Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Science Signaling, 2021, 14, .	1.6	10

#	Article	IF	Citations
19	Mitochondrial apoptotic priming is a key determinant of cell fate upon p53 restoration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
20	ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins. Cells, 2021, 10, 1659.	1.8	16
21	Cell Line–Specific Network Models of ER+ Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Research, 2021, 81, 4603-4617.	0.4	13
22	Dynamic BH3 profiling identifies active BH3 mimetic combinations in non-small cell lung cancer. Cell Death and Disease, 2021, 12, 741.	2.7	15
23	Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nature Cancer, 2021, 2, 758-772.	5.7	52
24	Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer. Breast Cancer Research, 2021, 23, 83.	2.2	13
25	An Autochthonous Mouse Model of <i>Myd88</i> - and <i>BCL2</i> -Driven Diffuse Large B-cell Lymphoma Reveals Actionable Molecular Vulnerabilities. Blood Cancer Discovery, 2021, 2, 70-91.	2.6	21
26	Adding venetoclax to fludarabine/busulfan RIC transplant for high-risk MDS and AML is feasible, safe, and active. Blood Advances, 2021, 5, 5536-5545.	2.5	24
27	Activation of <i>Notch</i> and <i>Myc</i> Signaling via B-cellâ€"Restricted Depletion of <i>Dnmt3a</i> Generates a Consistent Murine Model of Chronic Lymphocytic Leukemia. Cancer Research, 2021, 81, 6117-6130.	0.4	10
28	Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. Science Advances, 2021, 7, eabe5469.	4.7	14
29	Maturity State and MCL-1 Dependence Predetermines Response to NOTCH1 Inhibition in T-ALL. Blood, 2021, 138, 3484-3484.	0.6	0
30	B Cell-Restricted Depletion of Dnmt3a Activates Notch Signaling and Causes Chronic Lymphocytic Leukemia. Blood, 2021, 138, 249-249.	0.6	0
31	BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death and Differentiation, 2020, 27, 999-1007.	5.0	54
32	Increased mitochondrial apoptotic priming with targeted therapy predicts clinical response to reâ€induction chemotherapy. American Journal of Hematology, 2020, 95, 245-250.	2.0	13
33	Reduced Mitochondrial Apoptotic Priming Drives Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 872-890.e6.	7.7	80
34	Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30566-30576.	3.3	43
35	Navitoclax enhances the effectiveness of EGFR-targeted antibody-drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Research, 2020, 22, 132.	2.2	19
36	Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 2020, 383, 617-629.	13.9	1,407

3

#	Article	IF	CITATIONS
37	Combined EZH2 and Bcl-2 inhibitors as precision therapy for genetically defined DLBCL subtypes. Blood Advances, 2020, 4, 5226-5231.	2.5	28
38	High-throughput dynamic BH3 profiling may quickly and accurately predict effective therapies in solid tumors. Science Signaling, 2020, 13, .	1.6	44
39	Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discovery, 2020, 10, 1500-1513.	7.7	24
40	Results of Venetoclax and Azacitidine Combination in Chemotherapy Ineligible Untreated Patients with Acute Myeloid Leukemia with <i>FLT3</i> Mutations. Blood, 2020, 136, 8-10.	0.6	11
41	Maximal Tolerated Dose of the BCL-2 Inhibitor Venetoclax in Combination with Daunorubicin/Cytarabine Induction in Previously Untreated Adults with Acute Myeloid Leukemia (AML). Blood, 2020, 136, 40-41.	0.6	10
42	Pre-Clinical Validation of a Novel Erk1/2 and CDK4/6 Inhibitor Combination in Multiple Myeloma (MM). Blood, 2020, 136, 22-23.	0.6	0
43	CCR2 Expression Signature Can Classify and Predict Outcome in a Subpopulation of Chronic Lymphocytic Leukemia (CLL) Patients. Blood, 2020, 136, 13-14.	0.6	0
44	Safety and Efficacy of Adding Venetoclax to Reduced Intensity Conditioning Chemotherapy Prior to Allogeneic Hematopoietic Cell Transplantation in Patients with High Risk Myeloid Malignancies. Blood, 2020, 136, 38-39.	0.6	12
45	MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nature Communications, 2019, 10, 3485.	5.8	54
46	Prediction of venetoclax activity in precursor B-ALL by functional assessment of apoptosis signaling. Cell Death and Disease, 2019, 10, 571.	2.7	29
47	Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Molecular Cancer Research, 2019, 17, 2281-2293.	1.5	29
48	Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell, 2019, 36, 369-384.e13.	7.7	224
49	Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood, 2019, 134, 160-170.	0.6	41
50	MCL1 and DEDD Promote Urothelial Carcinoma Progression. Molecular Cancer Research, 2019, 17, 1294-1304.	1.5	4
51	Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nature Communications, 2019, 10, 5157.	5.8	46
52	Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 2019, 20, 175-193.	16.1	1,185
53	Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood, 2019, 133, 7-17.	0.6	1,254
54	Targeted inhibition of PI3KÎ \pm ĴĨ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL. Blood, 2019, 133, 70-80.	0.6	75

#	Article	IF	CITATIONS
55	Biomarker-driven strategy for MCL1 inhibition in T-cell lymphomas. Blood, 2019, 133, 566-575.	0.6	44
56	Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms' tumor. JCl Insight, 2019, 4, .	2.3	21
57	DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. Journal of Clinical Investigation, 2019, 129, 5005-5019.	3.9	59
58	Phase I Trial of Escalating Doses of the Bcl-2 Inhibitor Venetoclax in Combination with Daunorubicin/Cytarabine Induction and High Dose Cytarabine Consolidation in Previously Untreated Adults with Acute Myeloid Leukemia (AML). Blood, 2019, 134, 3908-3908.	0.6	7
59	A Phase 1 Dose-Escalation Study of Adding Venetoclax to a Reduced Intensity Conditioning (RIC) Regimen Prior to Allogeneic Hematopoietic Cell Transplantation for Patients with High Risk Myeloid Malignancies. Blood, 2019, 134, 258-258.	0.6	2
60	Outcomes after Stem Cell Transplant in Older Patients with Acute Myeloid Leukemia Treated with Venetoclax-Based Therapies. Blood, 2019, 134, 264-264.	0.6	21
61	A Multicenter Phase I Study Combining Venetoclax with Mini-Hyper-CVD in Older Adults with Untreated and Relapsed/Refractory Acute Lymphoblastic Leukemia. Blood, 2019, 134, 3867-3867.	0.6	30
62	Primed for Self-Destruction: Adding Venetoclax to Azacitidine for MDS., 2019, 16,.		0
63	Individualized Mitochondrial Functional Approach to Combination of BCL-2 and MCL-1 Antagonism in Acute Myeloid Leukemia. Blood, 2019, 134, 2551-2551.	0.6	0
64	MEF2C Phosphorylation Is Required forÂChemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discovery, 2018, 8, 478-497.	7.7	59
65	Iterative optimization yields Mcl- $1\hat{a}$ estargeting stapled peptides with selective cytotoxicity to Mcl- $1\hat{a}$ estates of the United States of America, 2018, 115, E886-E895.	3.3	69
66	ER Stress Signaling Promotes the Survival of Cancer "Persister Cells―Tolerant to EGFR Tyrosine Kinase Inhibitors. Cancer Research, 2018, 78, 1044-1057.	0.4	87
67	Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncology, The, 2018, 19, 216-228.	5.1	551
68	Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nature Cell Biology, 2018, 20, 413-421.	4.6	41
69	Targeting B-Cell Lymphoma 2: A Lethal Shortcut in Del(17p) Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2018, 36, 1991-1993.	0.8	0
70	PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 3094-3114.	4.2	37
71	PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood, 2018, 132, 1095-1105.	0.6	160
72	Metabolomic and BH3 profiling of esophageal cancers: novel assessment methods for precision therapy. BMC Gastroenterology, 2018, 18, 94.	0.8	6

#	Article	IF	CITATIONS
73	BCL-2 inhibition in AML: an unexpected bonus?. Blood, 2018, 132, 1007-1012.	0.6	111
74	Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Reports, 2018, 19, .	2.0	56
75	Statins enhance efficacy of venetoclax in blood cancers. Science Translational Medicine, 2018, 10, .	5 . 8	61
76	Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. JCI Insight, 2018, 3, .	2.3	39
77	Venetoclax in Combination with Hypomethylating Agents Induces Rapid, Deep, and Durable Responses in Patients with AML Ineligible for Intensive Therapy. Blood, 2018, 132, 285-285.	0.6	29
78	Targeted Inhibition of PI3K $\hat{l}\pm\hat{l}$ Is Synergistic with BCL-2 Blockade in Genetically Defined Subtypes of DLBCL. Blood, 2018, 132, 39-39.	0.6	0
79	Dynamic BH3 Profiling Predicts for Clinical Response to Lenalidomide Plus Chemotherapy in Relapsed Acute Myeloid Leukemia. Blood, 2018, 132, 4058-4058.	0.6	1
80	Apoptotic Blocks in Primary Non-Hodgkin B-Cell Lymphomas Identified By BH3 Profiling. Blood, 2018, 132, 4126-4126.	0.6	0
81	PRC2 Inactivation Induces Resistance to Chemotherapy-Induced Apoptosis By Upregulating the TRAP1 Mitochondrial Chaperone in T-ALL. Blood, 2018, 132, 889-889.	0.6	0
82	Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature, 2017, 543, 428-432.	13.7	423
83	Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell, 2017, 31, 142-156.	7.7	190
84	Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax. Cancer Discovery, 2017, 7, 156-164.	7.7	164
85	Overcoming mutational complexity in acute myeloid leukemia by inhibition of critical pathways. Science Translational Medicine, 2017, 9, .	5 . 8	19
86	Inhibition of USP10 induces degradation of oncogenic FLT3. Nature Chemical Biology, 2017, 13, 1207-1215.	3.9	89
87	Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nature Medicine, 2017, 23, 1342-1351.	15.2	79
88	BCL-XL directly modulates RAS signalling to favour cancer cell stemness. Nature Communications, 2017, 8, 1123.	5. 8	43
89	Functional precision cancer medicine—moving beyond pure genomics. Nature Medicine, 2017, 23, 1028-1035.	15.2	252
90	Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Science Translational Medicine, 2017, 9, .	5.8	155

#	Article	IF	Citations
91	Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax. Cancer Discovery, 2017, 7, 1376-1393.	7.7	105
92	Apoptosis and Cancer. Annual Review of Cancer Biology, 2017, 1, 275-294.	2.3	88
93	Discovery and biological characterization of potent myeloid cell leukemiaâ€1 inhibitors. FEBS Letters, 2017, 591, 240-251.	1.3	49
94	Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. ELife, 2017, 6, .	2.8	54
95	Synergistic interactions with PI3K inhibition that induce apoptosis. ELife, 2017, 6, .	2.8	25
96	Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget, 2017, 8, 16220-16232.	0.8	22
97	Epistatic mutations in PUMA BH3 drive an alternate binding mode to potently and selectively inhibit anti-apoptotic Bfl-1. ELife, 2017, 6, .	2.8	33
98	Genomic evolution and chemoresistance in germ-cell tumours. Nature, 2016, 540, 114-118.	13.7	139
99	S63845, an MCL-1 Selective BH3 Mimetic: Another Arrow in Our Quiver. Cancer Cell, 2016, 30, 834-835.	7.7	25
100	Tight Sequestration of BH3 Proteins by BCL-xL at Subcellular Membranes Contributes to Apoptotic Resistance. Cell Reports, 2016, 17, 3347-3358.	2.9	44
101	Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using <scp>BH</scp> 3 mimetics – recent successes, current challenges and future promise. FEBS Journal, 2016, 283, 3523-3533.	2.2	78
102	Dynamic BH3 profiling-poking cancer cells with a stick. Molecular and Cellular Oncology, 2016, 3, e1040144.	0.3	24
103	BOK: Oddball of the BCL-2 Family. Trends in Cell Biology, 2016, 26, 389-390.	3.6	9
104	Mitochondriaâ€"Judges and Executioners of Cell Death Sentences. Molecular Cell, 2016, 61, 695-704.	4.5	278
105	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	7.7	227
106	The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood, 2016, 127, 3215-3224.	0.6	242
107	Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discovery, 2016, 6, 1106-1117.	7.7	799
108	To Prime, or Not to Prime: That Is the Question. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 131-140.	2.0	46

#	Article	IF	CITATIONS
109	Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nature Communications, 2016, 7, 11589.	5.8	285
110	Rapid Optimization of Mcl-1 Inhibitors using Stapled Peptide Libraries Including Non-Natural Side Chains. ACS Chemical Biology, 2016, 11, 1238-1244.	1.6	38
111	iBH3: simple, fixable BH3 profiling to determine apoptotic priming in primary tissue by flow cytometry. Biological Chemistry, 2016, 397, 671-678.	1.2	94
112	Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia. Journal of Clinical Investigation, 2016, 126, 3827-3836.	3.9	40
113	Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget, 2016, 7, 11500-11511.	0.8	30
114	Direct and immune-mediated cytotoxicity of interleukin-21 contributes to antitumor effects in mantle cell lymphoma. Blood, 2015, 126, 1555-1564.	0.6	31
115	MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Reports, 2015, 13, 2715-2727.	2.9	118
116	Drug-Induced Death Signaling Strategy Rapidly Predicts Cancer Response to Chemotherapy. Cell, 2015, 160, 977-989.	13.5	295
117	Potent and Specific Peptide Inhibitors of Human Pro-Survival Protein Bcl-xL. Journal of Molecular Biology, 2015, 427, 1241-1253.	2.0	35
118	Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 29-41.	7.7	95
119	Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 2015, 15, 747-756.	12.8	466
120	Cell Death and Cancer Therapy: Don't Forget to Kill the Cancer Cell!. Clinical Cancer Research, 2015, 21, 5015-5020.	3.2	23
121	Abstract 2834: BH3 profiling predicts clinical response in a phase II clinical trial of ABT-199 (GDC-0199) in acute myeloid leukemia. Cancer Research, 2015, 75, 2834-2834.	0.4	3
122	Abstract 4728: Apoptotic priming is regulated by a developmental program and predisposes children to therapy-induced toxicity. Cancer Research, 2015, 75, 4728-4728.	0.4	1
123	A Phase 1b Study of Venetoclax (ABT-199/GDC-0199) in Combination with Decitabine or Azacitidine in Treatment-Naive Patients with Acute Myelogenous Leukemia Who Are ≥ to 65 Years and Not Eligible for Standard Induction Therapy. Blood, 2015, 126, 327-327.	0.6	37
124	Ibrutinib Therapy Increases BCL-2 Dependence and Enhances Sensitivity to Venetoclax in CLL. Blood, 2015, 126, 490-490.	0.6	15
125	The MDM2 Inhibitor NVP-CGM097 Is Highly Active in a Randomized Preclinical Trial of B-Cell Acute Lymphoblastic Leukemia Patient Derived Xenografts. Blood, 2015, 126, 797-797.	0.6	9
126	Increased mitochondrial apoptotic priming of human regulatory T cells after allogeneic hematopoietic stem cell transplantation. Haematologica, 2014, 99, 1499-1508.	1.7	15

#	Article	IF	CITATIONS
127	Cell and Molecular Determinants of <i>In Vivo</i> Efficacy of the BH3 Mimetic ABT-263 against Pediatric Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2014, 20, 4520-4531.	3.2	67
128	RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Science Signaling, 2014, 7, ra122.	1.6	65
129	Designed BH3 Peptides with High Affinity and Specificity for Targeting Mcl-1 in Cells. ACS Chemical Biology, 2014, 9, 1962-1968.	1.6	91
130	Maturation Stage of T-cell Acute Lymphoblastic Leukemia Determines BCL-2 versus BCL-XL Dependence and Sensitivity to ABT-199. Cancer Discovery, 2014, 4, 1074-1087.	7.7	201
131	Selective BCL-2 Inhibition by ABT-199 Causes On-Target Cell Death in Acute Myeloid Leukemia. Cancer Discovery, 2014, 4, 362-375.	7.7	561
132	Failure to Induce Apoptosis via BCL-2 Family Proteins Underlies Lack of Efficacy of Combined MEK and PI3K Inhibitors for KRAS-Mutant Lung Cancers. Cancer Research, 2014, 74, 3146-3156.	0.4	69
133	APCCdc20 Suppresses Apoptosis through Targeting Bim for Ubiquitination and Destruction. Developmental Cell, 2014, 29, 377-391.	3.1	110
134	Mitochondrial Apoptotic Priming Is Associated with Clinical Response to the Bcl-2 Antagonist ABT-199 in Chronic Lymphocytic Leukemia. Blood, 2014, 124, 1940-1940.	0.6	4
135	High Mitochondrial Priming Sensitizes hESCs to DNA-Damage-Induced Apoptosis. Cell Stem Cell, 2013, 13, 483-491.	5.2	136
136	BH3 profiling â€" Measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Letters, 2013, 332, 202-205.	3.2	150
137	BID Preferentially Activates BAK while BIM Preferentially Activates BAX, Affecting Chemotherapy Response. Molecular Cell, 2013, 51, 751-765.	4.5	200
138	<scp>KPT</scp> â€330 inhibitor of <scp>CRM</scp> 1 (<scp>XPO</scp> 1)â€mediated nuclear export has selective antiâ€leukaemic activity in preclinical models of <scp>T</scp> â€cell acute lymphoblastic leukaemia and acute myeloid leukaemia. British Journal of Haematology, 2013, 161, 117-127.	1.2	149
139	Overcoming stroma-mediated treatment resistance in chronic lymphocytic leukemia through BCL-2 inhibition. Leukemia and Lymphoma, 2013, 54, 1823-1825.	0.6	23
140	Priming BCL-2 to kill: the combination therapy of tamoxifen and ABT-199 in ER+ breast cancer. Breast Cancer Research, 2013, 15, 317.	2.2	9
141	Mitochondria: gatekeepers of response to chemotherapy. Trends in Cell Biology, 2013, 23, 612-619.	3 . 6	140
142	ABT-199: Taking Dead Aim at BCL-2. Cancer Cell, 2013, 23, 139-141.	7.7	83
143	BH3 profiling in whole cells by fluorimeter or FACS. Methods, 2013, 61, 156-164.	1.9	130
144	BCL-2 Inhibition: Stemming the Tide of Myeloid Malignancies. Cell Stem Cell, 2013, 12, 269-270.	5 . 2	8

#	Article	IF	CITATIONS
145	BH3 Profiling Predicts On-Target Cell Death Due To Selective Inhibition Of BCL-2 By ABT-199 In Acute Myelogenous Leukemia. Blood, 2013, 122, 238-238.	0.6	2
146	Low-Dose IL-2 Induces Bcl2 Expression and Resistance To Apoptosis In CD4 Regulatory T Cells. Blood, 2013, 122, 3475-3475.	0.6	1
147	HSP90 Inhibition Has Potent Activity Against T-Cell Acute Lymphoblastic Leukemia (T-ALL) Through Degradation Of TYK2 Kinase. Blood, 2013, 122, 2528-2528.	0.6	0
148	Therapeutic Targeting of the Bcl2 Family. Blood, 2013, 122, SCI-42-SCI-42.	0.6	0
149	BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1 \hat{i} ±. EMBO Journal, 2012, 31, 2322-2335.	3.5	99
150	Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood, 2012, 120, 3501-3509.	0.6	117
151	Reactivation of ERK Signaling Causes Resistance to EGFR Kinase Inhibitors. Cancer Discovery, 2012, 2, 934-947.	7.7	255
152	Relative Mitochondrial Priming of Myeloblasts and Normal HSCs Determines Chemotherapeutic Success in AML. Cell, 2012, 151, 344-355.	13.5	294
153	BCL2 Suppresses PARP1 Function and Nonapoptotic Cell Death. Cancer Research, 2012, 72, 4193-4203.	0.4	49
154	Targeting the B-Cell Lymphoma/Leukemia 2 Family in Cancer. Journal of Clinical Oncology, 2012, 30, 3127-3135.	0.8	236
155	Pretreatment Mitochondrial Priming Correlates with Clinical Response to Cytotoxic Chemotherapy. Science, 2011, 334, 1129-1133.	6.0	502
156	Who Put the "A―in Atg12: Autophagy or Apoptosis?. Molecular Cell, 2011, 44, 844-845.	4.5	10
157	Targeting Bcl-2 in CLL: cui bono?. Blood, 2011, 118, 3453-3454.	0.6	0
158	A new face of BCL-2 inhibition in CLL. Blood, 2011, 117, 2750-2751.	0.6	3
159	Using BH3 Profiling As a Predictive Indicator for Myeloma Patient Response to Bortezomib,. Blood, 2011, 118, 3952-3952.	0.6	3
160	Measuring Mitochondrial Apoptotic Priming by BH3 Profiling Predicts Induction Outcome for Acute Myeloid Leukemia Patients. Blood, 2011, 118, 239-239.	0.6	0
161	BH3 Profiling Demonstrates That Restoration of Apoptotic Priming Contributes to Increased Sensitivity to PI3K Inhibition in Stroma-Exposed Chronic Lymphocytic Leukemia Cells. Blood, 2011, 118, 974-974.	0.6	2
162	Mitochondrial Apoptotic Priming Measured by BH3 Profiling Regulates Clinical Response to Chemotherapy in Myeloma and Acute Lymphoblastic Leukemia and Explains Therapeutic Index. Blood, 2011, 118, 1442-1442.	0.6	O

#	Article	IF	Citations
163	Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood, 2010, 115, 3304-3313.	0.6	315
164	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	13.7	3,331
165	Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4 ⁺ CD8 ⁺ thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12895-12900.	3.3	113
166	BH3-Only Proteins and Their Effects on Cancer. Advances in Experimental Medicine and Biology, 2010, 687, 49-63.	0.8	37
167	BH3 Profiling Demonstrates Decreased Mitochondrial Priming for Apoptosis In Primary CLL Cells Exposed to Stroma. Blood, 2010, 116, 692-692.	0.6	0
168	Control of mitochondrial apoptosis by the Bcl-2 family. Journal of Cell Science, 2009, 122, 437-441.	1.2	764
169	Puma strikes Bax. Journal of Cell Biology, 2009, 185, 189-191.	2.3	28
170	Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Human Molecular Genetics, 2009, 18, 4317-4328.	1.4	77
171	MCL-1–dependent leukemia cells are more sensitive to chemotherapy than BCL-2–dependent counterparts. Journal of Cell Biology, 2009, 187, 429-442.	2.3	81
172	Hiding from ABT-737 in lymph nodes. Blood, 2009, 113, 4132-4133.	0.6	2
173	MCL-1–dependent leukemia cells are more sensitive to chemotherapy than BCL-2–dependent counterparts. Journal of Experimental Medicine, 2009, 206, i27-i27.	4.2	0
174	Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nature Reviews Cancer, 2008, 8, 121-132.	12.8	524
175	Alteration of the Mitochondrial Apoptotic Pathway Is Key to Acquired Paclitaxel Resistance and Can Be Reversed by ABT-737. Cancer Research, 2008, 68, 7985-7994.	0.4	119
176	Regulation of Bcl-2 Family Proteins by Posttranslational Modifications. Current Molecular Medicine, 2008, 8, 102-118.	0.6	98
177	BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood, 2008, 111, 2300-2309.	0.6	204
178	Rational Design of Therapeutics Targeting the BCL-2 Family: Are Some Cancer Cells Primed for Death but Waiting for a Final Push?. Advances in Experimental Medicine and Biology, 2008, 615, 159-175.	0.8	22
179	Apoptosis Dysregulation in CLL. , 2008, , 91-102.		0
180	Proapoptotic BH3-Only BCL-2 Family Protein BIM Connects Death Signaling from Epidermal Growth Factor Receptor Inhibition to the Mitochondrion. Cancer Research, 2007, 67, 11867-11875.	0.4	146

#	Article	IF	CITATIONS
181	BH3 Profiling Identifies Three Distinct Classes of Apoptotic Blocks to Predict Response to ABT-737 and Conventional Chemotherapeutic Agents. Cancer Cell, 2007, 12, 171-185.	7.7	457
182	Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. Journal of Clinical Investigation, 2007, 117, 112-121.	3.9	521
183	Detecting Apoptotic Blocks and Sensitvity to ABT-737 and Conventional Chemotherapy Via BH3 Profiling Blood, 2007, 110, 4523-4523.	0.6	0
184	Growth Factor Withdrawal and Apoptosis: The Middle Game. Molecular Cell, 2006, 21, 728-730.	4.5	44
185	Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006, 9, 351-365.	7.7	1,132
186	Restoring cancer's death sentence. Cancer Cell, 2006, 10, 343-345.	7.7	18
187	An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435, 677-681.	13.7	3,157
188	BCL-2: found bound and drugged!. Trends in Molecular Medicine, 2005, 11, 442-444.	3.5	40
189	The BCL-2 network: Mechanistic insights and therapeutic potential. Drug Discovery Today Disease Mechanisms, 2005, 2, 145-151.	0.8	1
190	Pharmacological manipulation of Bcl-2 family members to control cell death. Journal of Clinical Investigation, 2005, 115, 2648-2655.	3.9	108
191	Requirement of Caspase-8 Versus Caspase-9 during Apoptosis in Multiple Myeloma Cells Induced by Bortezomib- or a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3378-3378.	0.6	1
192	The Molecular Basis for BCL-2 Oncogene Addiction in CLL Blood, 2005, 106, 5008-5008.	0.6	1
193	Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell, 2004, 6, 241-249.	7.7	167
194	Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature, 2003, 426, 671-676.	13.7	708
195	BH3 domains as BCL-2 inhibitors: prototype cancer therapeutics. Expert Opinion on Biological Therapy, 2003, 3, 293-304.	1.4	26
196	Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2, 183-192.	7.7	1,467
197	Cancer, Coagulation, and Anticoagulation. Oncologist, 1999, 4, 443-449.	1.9	48
198	The Control of Mitochondrial Apoptosis by the BCL-2 Family. , 0, , 44-50.		2