
John C Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3349984/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission. Space Science Reviews, 2013, 179, 183-220.	3.7	421
2	Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. Journal of Geophysical Research, 2004, 109, .	3.3	401
3	SAPS: A new categorization for sub-auroral electric fields. Eos, 2002, 83, 393.	0.1	350
4	Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 1993, 98, 1675-1689.	3.3	333
5	Average characteristics and activity dependence of the subauroral polarization stream. Journal of Geophysical Research, 2002, 107, SIA 16-1-SIA 16-10.	3.3	321
6	Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. Journal of Geophysical Research, 2005, 110, .	3.3	284
7	Ionospheric signatures of plasmaspheric tails. Geophysical Research Letters, 2002, 29, 1-1.	1.5	270
8	lonospheric convection associated with discrete levels of particle precipitation. Geophysical Research Letters, 1986, 13, 656-659.	1.5	265
9	Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 2005, 110,	3.3	255
10	Storm time electric field penetration observed at midâ€latitude. Journal of Geophysical Research, 1991, 96, 5707-5721.	3.3	173
11	An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature, 2014, 515, 531-534.	13.7	159
12	Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations. Geophysical Research Letters, 2014, 41, 1351-1358.	1.5	127
13	A quantitative explanation for the phenomenon known as storm-enhanced density. Geophysical Research Letters, 2004, 31, .	1.5	122
14	Space Weather Effects in the Earth's Radiation Belts. Space Science Reviews, 2018, 214, 1.	3.7	121
15	Prompt midlatitude electric field effects during severe geomagnetic storms. Journal of Geophysical Research, 1998, 103, 26367-26372.	3.3	111
16	Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions. Space Science Reviews, 2009, 145, 55-106.	3.7	109
17	Shockâ€induced prompt relativistic electron acceleration in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 1661-1674.	0.8	104
18	Midlatitude TEC enhancements during the October 2003 superstorm. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	101

John C Foster

#	Article	IF	CITATIONS
19	Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophysical Research Letters, 2004, 31, .	1.5	99
20	On the relationship of SAPS to storm-enhanced density. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 303-313.	0.6	99
21	Simultaneous Ground- and Space-Based Observations of the Plasmaspheric Plume and Reconnection. Science, 2014, 343, 1122-1125.	6.0	97
22	Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of Geophysical Research: Space Physics, 2013, 118, 1180-1189.	0.8	93
23	Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 6647-6660.	0.8	93
24	lonospheric signatures of magnetospheric convection. Journal of Geophysical Research, 1984, 89, 855-865.	3.3	89
25	Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations. Geophysical Research Letters, 2014, 41, 20-25.	1.5	88
26	Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. Journal of Geophysical Research: Space Physics, 2017, 122, 324-339.	0.8	85
27	Plasma convection in the vicinity of the dayside cleft. Journal of Geophysical Research, 1984, 89, 9107-9113.	3.3	82
28	Observations from Millstone Hill during the geomagnetic disturbances of March and April 1990. Journal of Geophysical Research, 1992, 97, 1225-1243.	3.3	82
29	Storm time heavy ion outflow at midâ€latitude. Journal of Geophysical Research, 1990, 95, 7881-7891.	3.3	79
30	Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause. Journal of Geophysical Research, 1976, 81, 2183-2192.	3.3	77
31	Simultaneous observations of E-region coherent backscatter and electric field amplitude at F-region heights with the Millstone Hill UHF Radar. Geophysical Research Letters, 2000, 27, 3177-3180.	1.5	71
32	Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. Journal of Geophysical Research, 2012, 117, .	3.3	68
33	A quantitative study of ionospheric density gradients at midlatitudes. Journal of Geophysical Research, 2001, 106, 21555-21563.	3.3	67
34	Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	67
35	East-West Coast differences in total electron content over the continental US. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	67
36	Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophysical Research Letters, 2014, 41, 762-768.	1.5	65

John C Foster

#	Article	IF	CITATIONS
37	Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions. Journal of Geophysical Research: Space Physics, 2015, 120, 4519-4530.	0.8	61
38	Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophysical Research Letters, 2015, 42, 5132-5140.	1.5	59
39	Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm. Journal of Geophysical Research: Space Physics, 2016, 121, 5537-5548.	0.8	59
40	SAPS/SAID revisited: A causal relation to the substorm current wedge. Journal of Geophysical Research: Space Physics, 2017, 122, 8516-8535.	0.8	59
41	Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Transactions on Plasma Science, 2012, 40, 1267-1286.	0.6	58
42	Observations of ionâ€neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick's Day storm. Journal of Geophysical Research: Space Physics, 2017, 122, 1314-1337.	0.8	57
43	The Earth: Plasma Sources, Losses, and Transport Processes. Space Science Reviews, 2015, 192, 145-208.	3.7	54
44	Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spreadFbubbles near the plasmapause. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	53
45	Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America. Geophysical Research Letters, 2005, 32, .	1.5	52
46	Longitude sector comparisons of storm enhanced density. Geophysical Research Letters, 2007, 34, .	1.5	52
47	Storm enhanced density: magnetic conjugacy effects. Annales Geophysicae, 2007, 25, 1791-1799.	0.6	51
48	Modeling CMEâ€shockâ€driven storms in 2012–2013: MHD test particle simulations. Journal of Geophysical Research: Space Physics, 2015, 120, 1168-1181.	0.8	50
49	Multistation measurements of highâ€latitude ionospheric convection. Journal of Geophysical Research, 1983, 88, 10111-10121.	3.3	49
50	Millstone Hill coherent-scatter radar observations of electric field variability in the sub-auroral polarization stream. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	49
51	Conjugate localized enhancement of total electron content at low latitudes in the American sector. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1241-1252.	0.6	48
52	A linkage between polar patches and plasmaspheric drainage plumes. Geophysical Research Letters, 2001, 28, 111-113.	1.5	45
53	Effects of magnetospheric electric fields and neutral winds on the lowâ€middle latitude ionosphere during the March 20â€21, 1990, storm. Journal of Geophysical Research, 1993, 98, 19133-19140.	3.3	44
54	Global ULF disturbances during a stormtime substorm on 25 September 1998. Journal of Geophysical Research. 2002. 107. SMP 40-1-SMP 40-11.	3.3	41

JOHN C FOSTER

#	Article	IF	CITATIONS
55	Correlation of the subauroral polarization streams (SAPS) with the <i>Dst</i> index during severe magnetic storms. Journal of Geophysical Research, 2007, 112, .	3.3	39
56	Inferred electric field variability in the polarization jet from Millstone HillEregion coherent scatter observations. Radio Science, 2002, 37, 11-1-11-14.	0.8	34
57	Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistlerâ€Mode Chorus Emissions. Journal of Geophysical Research: Space Physics, 2019, 124, 2795-2810.	0.8	33
58	Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere. Geophysical Research Letters, 2017, 44, 8159-8167.	1.5	31
59	Startâ€ŧoâ€end global imaging of a sunward propagating, SAPSâ€associated giant undulation event. Journal of Geophysical Research, 2010, 115, .	3.3	27
60	Redistribution of the stormtime ionosphere and the formation of a plasmaspheric bulge. Geophysical Monograph Series, 2005, , 277-289.	0.1	25
61	Magnetospheric conditions at the time of enhanced wave-particle interactions near the plasmapause. Journal of Geophysical Research, 1976, 81, 2175-2182.	3.3	24
62	Plasma Transport through the Dayside Cleft: A Source of Ionization Patches in the Polar Cap. , 1989, , 343-354.		24
63	The Relativistic Electron-Proton Telescope (REPT) Investigation: Design, Operational Properties, and Science Highlights. Space Science Reviews, 2021, 217, 1.	3.7	23
64	Predicting plasmaspheric radial density profiles. Journal of Geophysical Research, 1997, 102, 2079-2091.	3.3	22
65	Ionospheric symmetry caused by geomagnetic declination over North America. Geophysical Research Letters, 2013, 40, 5350-5354.	1.5	22
66	Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions. , 2009, , 55-106.		20
67	Ionospheric longitudinal variations at midlatitudes: Incoherent scatter radar observation at Millstone Hill. Science China Technological Sciences, 2012, 55, 1153-1160.	2.0	20
68	lonospheric-Magnetospheric-Heliospheric Coupling: Storm-Time Thermal Plasma Redistribution. Geophysical Monograph Series, 0, , 121-134.	0.1	20
69	Structure and evolution of electron "zebra stripes―in the inner radiation belt. Journal of Geophysical Research: Space Physics, 2016, 121, 4145-4157.	0.8	19
70	High-Resolution Observations of Electric Fields and F-Region Plasma Parameters in the Cleft Ionosphere. , 1985, , 349-364.		16
71	Global storm time plasma redistribution imaged from the ground and space. Geophysical Research Letters, 2005, 32, .	1.5	15
72	A Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979–2019 Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028584.	0.8	12

JOHN C FOSTER

#	Article	IF	CITATIONS
73	Multipoint MMS observations of fineâ€scale SAPS structure in the inner magnetosphere. Geophysical Research Letters, 2016, 43, 7294-7300.	1.5	10
74	Subpacket structure in strong VLF chorus rising tones: characteristics and consequences for relativistic electron acceleration. Earth, Planets and Space, 2021, 73, 140.	0.9	10
75	Episodic Occurrence of Fieldâ€Aligned Energetic Ions on the Dayside. Geophysical Research Letters, 2020, 47, e2019GL086384.	1.5	9
76	Observations of the step-like accelerating processes of cold ions in the reconnection layer at the dayside magnetopause. Science Bulletin, 2018, 63, 31-37.	4.3	8
77	Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015. Geophysical Research Letters, 2016, 43, 9397-9405.	1.5	7
78	Electric Fields and Magnetic Fields in the Plasmasphere: AÂPerspective FromÂCLUSTER andÂIMAGE. Space Science Reviews, 2009, 145, 107-135.	3.7	6
79	Auroral post-secondary ions from the nightside ionosphere in the inner magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1213-1232.	0.6	5
80	Magnetospheric Convection near a Drainage Plume. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	4
81	Intercepted Signals for Ionospheric Science. , 2011, , .		3
82	Cold plasma redistribution throughout geospace. Science China Technological Sciences, 2016, 59, 1340-1345.	2.0	3
83	The Earth: Plasma Sources, Losses, and Transport Processes. Space Sciences Series of ISSI, 2016, , 145-208.	0.0	3
84	The Impenetrable Barrier: Suppression of Chorus Wave Growth by VLF Transmitters. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027913.	0.8	3
85	Intercepted signals for ionospheric science. Radio Science, 2013, 48, 248-264.	0.8	2
86	Van Allen Probes Observations of Oxygen Ions at the Geospace Plume. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	2
87	Formation, dynamics, and impact of plasmaspheric plumes. Eos, 2007, 88, 247-247.	0.1	1
88	An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere. , 2014, , .		1
89	Fast Ion Beams and Plasma Instabilities Excited by the Space Shuttle Orbital Maneuvering Subsystem (OMS) Engines. , 2007, , .		0
90	Coordinated arrays of distributed instruments: A new window on geospace science and space weather effects. , 2011, , .		0

6

#	Article	IF	CITATIONS
91	An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere. , 2014, , .		0
92	Imaging the plasmasphere with ground based GPS TEC observations and comparisons with in situ plasmaspheric observations with Van Allen Probes. , 2014, , .		0
93	Observations of E-region irregularities at mid-latitudes. , 2014, , .		0
94	Prompt energization of relativistic and highly relativistic electrons during a substorm interval. , 2014, , .		0
95	Initial observations of plasma waves in the sub-auroral polarization stream with the Van Allen Probes. , 2014, , .		0
96	Space Weather Effects in the Earth's Radiation Belts. Space Sciences Series of ISSI, 2017, , 371-430.	0.0	0