Ashmore Mawire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3349666/publications.pdf

Version: 2024-02-01

471509 477307 46 874 17 29 citations h-index g-index papers 46 46 46 519 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Performance of two solar cooking storage pots using parabolic dish solar concentrators during solar and storage cooking periods with different heating loads. Results in Engineering, 2022, 13, 100336.	5.1	23
2	Energetic and exergetic performance comparison of three solar cookers for developing countries. Environment, Development and Sustainability, 2021, 23, 14528-14555.	5.0	10
3	Experimental performance evaluation of a parabolic dish solar geyser using a generalized approach for decentralized applications. Sustainable Energy Technologies and Assessments, 2021, 47, 101454.	2.7	5
4	Experimental charging characteristics of medium-temperature cascaded packed bed latent heat storage systems. Journal of Energy Storage, 2021, 42, 103067.	8.1	17
5	A review of parabolic solar cookers with thermal energy storage. Heliyon, 2021, 7, e08226.	3.2	33
6	Performance comparison of medium temperature domestic packed bed latent heat storage systems. Renewable Energy, 2020, 146, 1897-1906.	8.9	20
7	Performance comparison of two metallic eutectic solder based medium-temperature domestic thermal energy storage systems. Energy, 2020, 194, 116828.	8.8	12
8	Performance comparison of two solar cooking storage pots combined with wonderbag slow cookers for off-sunshine cooking. Solar Energy, 2020, 208, $1166-1180$.	6.1	40
9	Performance comparison of two eutectic solder based latent heat storage systems during discharging. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012106.	0.3	О
10	Experimental study on the discharge characteristics of two eutectic solder packed bed latent heat storage systems. International Journal of Energy Research, 2020, , .	4.5	o
11	Performance of a medium temperature eutectic solder packed bed latent heat storage system for domestic applications. Journal of Energy Storage, 2020, 28, 101294.	8.1	12
12	Experimental analyses of sensible heat thermal energy storage systems during discharging. Sustainable Energy Technologies and Assessments, 2019, 35, 117-130.	2.7	18
13	Performance and design optimization of single-axis multi-position sun-tracking PV panels. Journal of Renewable and Sustainable Energy, 2019, 11, .	2.0	8
14	Dynamic thermal performance of four encapsulated PCM spheres for domestic medium temperature applications. Energy Procedia, 2019, 158, 4375-4382.	1.8	9
15	A mathematical procedure to predict optical efficiency of CPCs with tubular absorbers. Energy, 2019, 182, 187-200.	8.8	13
16	Performance comparison of four spherically encapsulated phase change materials for medium temperature domestic applications. Journal of Energy Storage, 2019, 23, 469-479.	8.1	24
17	Experimental energy and exergy analyses of a discharging heat exchanger for a small hot-oil domestic storage tank. International Journal of Green Energy, 2018, 15, 305-313.	3.8	6
18	Performance Comparison of a Latent Heat and Combined Thermal Energy Systems During Charging. , 2018, , .		1

#	Article	IF	Citations
19	Radial discharging thermal characteristics of a small domestic oil storage tank., 2018,,.		O
20	Energy and Exergy Performance of Three Sensible Heat Storage Systems During Charging. , 2018, , .		2
21	Thermal performance comparison of three sensible heat thermal energy storage systems during charging cycles. Sustainable Energy Technologies and Assessments, 2018, 30, 37-51.	2.7	40
22	Experimental de-stratification and heat loss in a storage tank containing different thermal oils. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2279-2288.	1.6	5
23	Experimental comparison of the dynamic operations of a sensible heat thermal energy storage and a latent heat thermal energy storage system. , 2017, , .		1
24	Experimental comparison of the thermal performances of acetanilide, meso-erythritol and an In-Sn alloy in similar spherical capsules. Applied Thermal Engineering, 2017, 124, 871-882.	6.0	21
25	Experimental thermal stratification comparison of two storage systems. Energy Procedia, 2017, 142, 3295-3300.	1.8	8
26	Investigation of In–48Sn as a phase change material candidate for thermal storage applications. Renewable Energy and Environmental Sustainability, 2017, 2, 20.	1.4	8
27	Performance of a Domestic Oil Storage Tank During Charging and Discharing Cycles. , 2017, , .		0
28	Parametric study on the thermal gradient of a small stratified domestic oil storage tank. , 2016, , .		1
29	Investigation of aluminum encapsulation of a PCM for domestic cooking. , 2016, , .		0
30	Performance of Sunflower Oil as a sensible heat storage medium for domestic applications. Journal of Energy Storage, 2016, 5, 1-9.	8.1	48
31	Solar Thermal Energy Storage for Solar Cookers. , 2015, , 327-358.		2
32	Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes. Energy for Sustainable Development, 2014, 19, 162-169.	4.5	85
33	Performance comparison of thermal energy storage oils for solar cookers during charging. Applied Thermal Engineering, 2014, 73, 1323-1331.	6.0	49
34	Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging. Applied Energy, 2013, 108, 459-465.	10.1	33
35	Experimental investigation on simultaneous charging and discharging of an oil storage tank. Energy Conversion and Management, 2013, 65, 245-254.	9.2	20
36	An experiment to evaluate the thermal performance of an oil-heating copper spiral coil. European Journal of Physics, 2013, 34, 547-557.	0.6	0

#	Article	IF	CITATIONS
37	A simple experiment to determine the characteristics of an NTC thermistor for low-temperature measurement applications. European Journal of Physics, 2012, 33, 1135-1145.	0.6	2
38	A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging. Applied Energy, 2011, 88, 4766-4778.	10.1	50
39	Determination of the spatial extent of the focal point of a parabolic dish reflectorÂusing a red laser diode. Renewable Energy, 2010, 35, 1982-1990.	8.9	4
40	Experimental volumetric heat transfer characteristics between oil and glass pebbles in a small glass tube storage. Energy, 2010, 35, 1256-1263.	8.8	14
41	Thermal performance of a small oil-in-glass tube thermal energy storage system during charging. Energy, 2009, 34, 838-849.	8.8	19
42	Experimental and simulated temperature distribution of an oil-pebble bed thermal energy storage system with a variable heat source. Applied Thermal Engineering, 2009, 29, 1086-1095.	6.0	66
43	Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems. Applied Energy, 2009, 86, 1246-1252.	10.1	80
44	Experimental characterisation of a thermal energy storage system using temperature and power controlled charging. Renewable Energy, 2008, 33, 682-693.	8.9	50
45	A feedforward IMC structure for controlling the charging temperature of a TES system of a solar cooker. Energy Conversion and Management, 2008, 49, 3143-3154.	9.2	14
46	Determination of Forced Convective Heat Transfer Coefficients on an Array of Disks. Heat Transfer Engineering, 0, , 1-13.	1.9	1