Barbara L F Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3349602/publications.pdf

Version: 2024-02-01

361045 377514 1,357 56 20 34 citations h-index g-index papers 57 57 57 1817 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	TCDD Inhibition of IgG1 Production in Experimental Autoimmune Encephalomyelitis (EAE) and In Vitro. Antibodies, 2022, 11, 4.	1.2	3
2	Isolation of Transcriptomicâ€Quality Total RNA from Mouse Spinal Cords. Current Protocols, 2022, 2, e338.	1.3	O
3	TCDD attenuates EAE through induction of FasL on B cells and inhibition of IgG production. Toxicology, 2021, 448, 152646.	2.0	12
4	Immunomodulation by cannabinoids: Current uses, mechanisms, and identification of data gaps to be addressed for additional therapeutic application. Advances in Pharmacology, 2021, 91, 1-59.	1.2	7
5	Effects of Chlorpyrifos on Serine Hydrolase Activities, Lipid Mediators, and Immune Responses in Lungs of Neonatal and Adult Mice. Chemical Research in Toxicology, 2021, 34, 1556-1571.	1.7	6
6	The CB ₁ Receptor Differentially Regulates IFN-γ Production <i>In Vitro</i> and in Experimental Autoimmune Encephalomyelitis. Cannabis and Cannabinoid Research, 2021, 6, 300-314.	1.5	4
7	CBD Suppression of EAE Is Correlated with Early Inhibition of Splenic IFN- \hat{I}^3 + CD8+ T Cells and Modest Inhibition of Neuroinflammation. Journal of NeuroImmune Pharmacology, 2021, 16, 346-362.	2.1	25
8	Immune Responses Regulated by Cannabidiol. Cannabis and Cannabinoid Research, 2020, 5, 12-31.	1.5	163
9	Electronic-Cigarette Vehicles and Flavoring Affect Lung Function and Immune Responses in a Murine Model. International Journal of Molecular Sciences, 2020, 21, 6022.	1.8	48
10	Persistent organic pollutants (POPs) increase rage signaling to promote downstream cardiovascular remodeling. Environmental Toxicology, 2019, 34, 1149-1159.	2.1	7
11	Neuroinflammation and B-Cell Phenotypes in Cervical and Lumbosacral Regions of the Spinal Cord in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin. NeuroImmunoModulation, 2019, 26, 198-207.	0.9	7
12	Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2018, 75, 11.25.1-11.25.22.	1.1	6
13	CLARITY-BPA: Effects of chronic Bisphenol A exposure on the immune system: Part 1 – Quantification of the relative number and proportion of leukocyte populations in the spleen and thymus. Toxicology, 2018, 396-397, 46-53.	2.0	31
14	Endocannabinoid engagement of CB2 regulates RSV-induced immunity. Virulence, 2018, 9, 494-495.	1.8	0
15	CLARITY-BPA: Effects of chronic bisphenol A exposure on the immune system: Part 2 – Characterization of lymphoproliferative and immune effector responses by splenic leukocytes. Toxicology, 2018, 396-397, 54-67.	2.0	32
16	Induction of Immunosuppressive CD8+CD25+FOXP3+ Regulatory T Cells by Suboptimal Stimulation with Staphylococcal Enterotoxin C1. Journal of Immunology, 2018, 200, 669-680.	0.4	25
17	Characterization of Endocannabinoid-Metabolizing Enzymes in Human Peripheral Blood Mononuclear Cells under Inflammatory Conditions. Molecules, 2018, 23, 3167.	1.7	17
18	Effect of repeated juvenile exposure to î"9‑tetrahydrocannabinol on anxiety-related behavior and social interactions in adolescent rats. Neurotoxicology and Teratology, 2018, 69, 11-20.	1.2	8

#	Article	IF	Citations
19	Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male <i>Ob/Ob</i> mice. Environmental Toxicology, 2017, 32, 1399-1411.	2.1	25
20	Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cellular Immunology, 2017, 312, 25-34.	1.4	33
21	Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD). Toxicology, 2016, 368-369, 172-182.	2.0	17
22	Reduced Noradrenergic Signaling in the Spleen Capsule in the Absence of CB1 and CB2 Cannabinoid Receptors. Journal of NeuroImmune Pharmacology, 2016, 11, 669-679.	2.1	6
23	Immunomodulation By Subchronic Low Dose 2,3,7,8-Tetrachlorodibenzo- <i>p</i> p-Dioxin in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin. Toxicological Sciences, 2016, 151, 35-43.	1.4	20
24	Contributions of Nonhematopoietic Cells and Mediators to Immune Responses: Implications For Immunotoxicology. Toxicological Sciences, 2015, 145, 214-232.	1.4	11
25	Modulation of HIVGP120 Antigen-Specific Immune Responses In Vivo by Δ9-Tetrahydrocannabinol. Journal of NeuroImmune Pharmacology, 2015, 10, 344-355.	2.1	15
26	Lipopolysaccharide suppresses carboxylesterase 2g activity and 2-arachidonoylglycerol hydrolysis: A possible mechanism to regulate inflammation. Prostaglandins and Other Lipid Mediators, 2015, 121, 199-206.	1.0	24
27	Induced T cell cytokine production is enhanced by engineered nanoparticles. Nanotoxicology, 2014, 8, 11-23.	1.6	13
28	Enhanced Humoral Immunity in Mice Lacking CB1 and CB2 Receptors (Cnr1 â^'/â^' /Cnr2 â^'/â^' Mice) is not Due to Increased Splenic Noradrenergic Neuronal Activity. Journal of NeuroImmune Pharmacology, 2014, 9, 544-557.	2.1	6
29	Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Particle and Fibre Toxicology, 2013, 10, 26.	2.8	101
30	Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. Journal of Immunotoxicology, 2013, 10, 321-328.	0.9	44
31	Suppression by Δ9-tetrahydrocannabinol of the primary immunoglobulin M response by human peripheral blood B cells is associated with impaired STAT3 activation. Toxicology, 2013, 310, 84-91.	2.0	9
32	Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by κ9-tetrahydrocannabinol in human CD4+ T cells. Toxicology and Applied Pharmacology, 2013, 273, 209-218.	1.3	18
33	The role of CB1 in immune modulation by cannabinoids. , 2013, 137, 365-374.		62
34	î"9-Tetrahydrocannabinol Impairs the Inflammatory Response to Influenza Infection: Role of Antigen-Presenting Cells and the Cannabinoid Receptors 1 and 2. Toxicological Sciences, 2013, 131, 419-433.	1.4	45
35	Magnitude of stimulation dictates the cannabinoid-mediated differential T cell response to HIVgp120. Journal of Leukocyte Biology, 2012, 92, 1093-1102.	1.5	27
36	15-Deoxy-Δ ^{12,14} -Prostaglandin J ₂ -Glycerol, a Putative Metabolite of 2-Arachidonyl Glycerol and a Peroxisome Proliferator-Activated Receptor γ Ligand, Modulates Nuclear Factor of Activated T Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 816-826.	1.3	19

#	Article	IF	CITATIONS
37	î"9-Tetrahydrocannabinol Suppresses Cytotoxic T Lymphocyte Function Independent of CB1 and CB2, Disrupting Early Activation Events. Journal of NeuroImmune Pharmacology, 2012, 7, 843-855.	2.1	25
38	Comparison of the D2 Receptor Regulation and Neurotoxicant Susceptibility of Nigrostriatal Dopamine Neurons in Wild-Type and CB1/CB2 Receptor Knockout Mice. Journal of NeuroImmune Pharmacology, 2012, 7, 533-538.	2.1	5
39	Differential Modulation by Delta9-Tetrahydrocannabinol (â^†9-THC) of CD40 Ligand (CD40L) Expression in Activated Mouse Splenic CD4+ T cells. Journal of NeuroImmune Pharmacology, 2012, 7, 969-980.	2.1	5
40	2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells. Toxicology and Applied Pharmacology, 2011, 255, 251-260.	1.3	27
41	Deletion of cannabinoid receptors 1 and 2 exacerbates APC function to increase inflammation and cellular immunity during influenza infection. Journal of Leukocyte Biology, 2011, 90, 983-995.	1.5	32
42	Suppression of humoral immune responses by 2,3,7,8â€tetrachlorodibenzoâ€ <i>p</i> à€dioxin intercalated in smectite clay. Environmental Toxicology and Chemistry, 2011, 30, 2748-2755.	2.2	8
43	TCDD adsorbed on silica as a model for TCDD contaminated soils: Evidence for suppression of humoral immunity in mice. Toxicology, 2011, 282, 82-87.	2.0	9
44	15-Deoxy-Î" < sup > 12,14 < /sup > -prostaglandin J < sub > 2 < /sub > -Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ. Molecular Pharmacology, 2011, 80, 201-209.	1.0	38
45	The Effects of Targeted Deletion of Cannabinoid Receptors CB ₁ and CB ₂ on Intranasal Sensitization and Challenge with Adjuvant-free Ovalbumin. Toxicologic Pathology, 2010, 38, 382-392.	0.9	12
46	Induction of the Aryl Hydrocarbon Receptor–Responsive Genes and Modulation of the Immunoglobulin M Response by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Primary Human B Cells. Toxicological Sciences, 2010, 118, 86-97.	1.4	28
47	Establishment of an Immunoglobulin M Antibody-Forming Cell Response Model for Characterizing Immunotoxicity in Primary Human B Cells. Toxicological Sciences, 2009, 112, 363-373.	1.4	17
48	Suppression of T cell costimulator ICOS by \hat{l} "9-tetrahydrocannabinol. Journal of Leukocyte Biology, 2009, 85, 322-329.	1.5	17
49	A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochemical Pharmacology, 2008, 76, 353-361.	2.0	37
50	The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochemical Pharmacology, 2008, 76, 726-737.	2.0	104
51	Effects of targeted deletion of cannabinoid receptors CB1 and CB2 on immune competence and sensitivity to immune modulation by Δ9-tetrahydrocannabinol. Journal of Leukocyte Biology, 2008, 84, 1574-1584.	1.5	37
52	Interferon- \hat{I}^3 renders tumors that express low levels of Her-2/neu sensitive to cytotoxic T cells. Cancer Immunology, Immunotherapy, 2006, 55, 653-662.	2.0	8
53	Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2′-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. Toxicology and Applied Pharmacology, 2005, 205, 107-115.	1.3	17
54	2-Arachidonoyl-glycerol suppresses interferon- \hat{l}^3 production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2. Journal of Leukocyte Biology, 2005, 77, 966-974.	1.5	25

#	Article	IF	CITATIONS
55	A new murine tumor model for studying HLA-A2-restricted anti-tumor immunity. Cancer Letters, 2005, 224, 153-166.	3.2	2
56	REDIRECTING T LYMPHOCYTE SPECIFICITY USING T CELL RECEPTOR GENES. International Reviews of Immunology, 2003, 22, 229-253.	1.5	7