
Yixian Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3349595/publications.pdf Version: 2024-02-01

VIVIAN THENC

#	Article	IF	CITATIONS
1	Phylogenetic convergence of phase separation and mitotic function in the disordered protein <scp>BuGZ</scp> . Protein Science, 2022, 31, 822-834.	3.1	4
2	Kansl1 haploinsufficiency impairs autophagosome-lysosome fusion and links autophagic dysfunction with Koolen-de Vries syndrome in mice. Nature Communications, 2022, 13, 931.	5.8	24
3	Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins. Journal of Cell Biology, 2021, 220, .	2.3	37
4	An APEX2 proximity ligation method for mapping interactions with the nuclear lamina. Journal of Cell Biology, 2021, 220, .	2.3	23
5	Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature, 2020, 582, 534-538.	13.7	71
6	aFARP-ChIP-seq, a convenient and reliable method for genome profiling in as few as 100 cells with a capability for multiplexing ChIP-seq. Epigenetics, 2019, 14, 877-893.	1.3	2
7	Loss of PICH promotes chromosome instability and cell death in triple-negative breast cancer. Cell Death and Disease, 2019, 10, 428.	2.7	24
8	Protein phase separation in mitosis. Current Opinion in Cell Biology, 2019, 60, 92-98.	2.6	29
9	AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nature Cell Biology, 2019, 21, 476-486.	4.6	98
10	Cellâ€ŧypeâ€specific role of laminâ€B1 in thymus development and its inflammationâ€driven reduction in thymus aging. Aging Cell, 2019, 18, e12952.	3.0	21
11	Role of lamins in 3D genome organization and global gene expression. Nucleus, 2019, 10, 33-41.	0.6	26
12	CscoreTool: fast Hi-C compartment analysis at high resolution. Bioinformatics, 2018, 34, 1568-1570.	1.8	66
13	Signaling protein signature predicts clinical outcome of non-small-cell lung cancer. BMC Cancer, 2018, 18, 259.	1.1	7
14	Aurora A activation in mitosis promoted by BuGZ. Journal of Cell Biology, 2018, 217, 107-116.	2.3	31
15	Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery. Molecular Cell, 2018, 71, 802-815.e7.	4.5	153
16	Cervical Cancer Growth Is Regulated by a c-ABL–PLK1 Signaling Axis. Cancer Research, 2017, 77, 1142-1154.	0.4	32
17	Lamin-B1 contributes to the proper timing of epicardial cell migration and function during embryonic heart development. Molecular Biology of the Cell, 2016, 27, 3956-3963.	0.9	14
18	Lamin in inflammation and aging. Current Opinion in Cell Biology, 2016, 40, 124-130.	2.6	47

YIXIAN ZHENG

#	Article	IF	CITATIONS
19	SUMOylated NKAP is essential for chromosome alignment by anchoring CENP-E to kinetochores. Nature Communications, 2016, 7, 12969.	5.8	33
20	Splicing function of mitotic regulators links R-loop–mediated DNA damage to tumor cell killing. Journal of Cell Biology, 2015, 209, 235-246.	2.3	57
21	Lamins position the nuclear pores and centrosomes by modulating dynein. Molecular Biology of the Cell, 2015, 26, 3379-3389.	0.9	48
22	RanGTP aids anaphase entry through Ubr5-mediated protein turnover. Journal of Cell Biology, 2015, 211, 7-18.	2.3	18
23	Identification of lamin B–regulated chromatin regions based on chromatin landscapes. Molecular Biology of the Cell, 2015, 26, 2685-2697.	0.9	53
24	Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Molecular Biology of the Cell, 2015, 26, 4075-4086.	0.9	207
25	Phase Transition of Spindle-Associated Protein Regulate Spindle Apparatus Assembly. Cell, 2015, 163, 108-122.	13.5	243
26	Low-Cell-Number Epigenome Profiling Aids the Study of Lens Aging and Hematopoiesis. Cell Reports, 2015, 13, 1505-1518.	2.9	39
27	Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins. Molecular Biology of the Cell, 2014, 25, 1287-1297.	0.9	61
28	A Microtubule-Associated Zinc Finger Protein, BuGZ, Regulates Mitotic Chromosome Alignment by Ensuring Bub3 Stability and Kinetochore Targeting. Developmental Cell, 2014, 28, 268-281.	3.1	71
29	Age-Associated Loss of Lamin-B Leads to Systemic Inflammation and Gut Hyperplasia. Cell, 2014, 159, 829-843.	13.5	155
30	The Nuclear Lamina Regulates Germline Stem Cell Niche Organization via Modulation of EGFR Signaling. Cell Stem Cell, 2013, 13, 73-86.	5.2	69
31	Generation and characterization of a conditional deletion allele for Lmna in mice. Biochemical and Biophysical Research Communications, 2013, 440, 8-13.	1.0	55
32	Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Research, 2013, 23, 1420-1423.	5.7	55
33	The function of lamins in the context of tissue building and maintenance. Nucleus, 2012, 3, 256-262.	0.6	13
34	Regulation of Pluripotency and Self- Renewal of ESCs through Epigenetic- Threshold Modulation and mRNA Pruning. Cell, 2012, 151, 576-589.	13.5	71
35	Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells. Science, 2011, 334, 1706-1710.	6.0	237
36	A Role for Borg5 During Trophectoderm Differentiation. Stem Cells, 2010, 28, 1030-1038.	1.4	23

YIXIAN ZHENG

#	Article	IF	CITATIONS
37	A membranous spindle matrix orchestrates cell division. Nature Reviews Molecular Cell Biology, 2010, 11, 529-535.	16.1	77
38	Lamin B Counteracts the Kinesin Eg5 to Restrain Spindle Pole Separation during Spindle Assembly. Journal of Biological Chemistry, 2010, 285, 35238-35244.	1.6	37
39	Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nature Cell Biology, 2009, 11, 247-256.	4.6	105
40	A Mitotic Lamin B Matrix Induced by RanGTP Required for Spindle Assembly. Science, 2006, 311, 1887-1893.	6.0	261
41	Aurora A Kinase-Coated Beads Function as Microtubule-Organizing Centers and Enhance RanGTP-Induced Spindle Assembly. Current Biology, 2005, 15, 2156-2163.	1.8	119
42	A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biology, 2003, 5, 242-248.	4.6	327
43	Role of Importin-beta in Coupling Ran to Downstream Targets in Microtubule Assembly. Science, 2001, 291, 653-656.	6.0	315
44	Stimulation of Microtubule Aster Formation and Spindle Assembly by the Small GTPase Ran. Science, 1999, 284, 1359-1362.	6.0	369
45	Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature, 1995, 378, 578-583.	13.7	823