List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3349420/publications.pdf

Version: 2024-02-01

DETED I LEWIS

#	Article	IF	CITATIONS
1	Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in <i>Bacillus subtilis</i> . Science, 2012, 335, 1103-1106.	12.6	809
2	Global Network Reorganization During Dynamic Adaptations of <i>Bacillus subtilis</i> Metabolism. Science, 2012, 335, 1099-1103.	12.6	255
3	Compartmentalization of transcription and translation in Bacillus subtilis. EMBO Journal, 2000, 19, 710-718.	7.8	240
4	GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene, 1999, 227, 101-109.	2.2	234
5	Direct evidence for active segregation of <i>oriC</i> regions of the <i>Bacillus subtilis</i> chromosome and coâ€localization with the Spo0J partitioning protein. Molecular Microbiology, 1997, 25, 945-954.	2.5	172
6	Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiology and Molecular Biology Reviews, 2016, 80, 139-160.	6.6	100
7	Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene, 2001, 264, 289-297.	2.2	87
8	Essential Biological Processes of an Emerging Pathogen: DNA Replication, Transcription, and Cell Division in <i>Acinetobacter</i> spp. Microbiology and Molecular Biology Reviews, 2010, 74, 273-297.	6.6	68
9	Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology (United Kingdom), 1996, 142, 733-740.	1.8	60
10	Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis : evidence for division apparatusâ€independent recruitment of Min proteins to the division site. Molecular Microbiology, 2003, 47, 37-48.	2.5	58
11	The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Molecular Microbiology, 2004, 54, 452-463.	2.5	56
12	pBaSysBioll: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis. Microbiology (United Kingdom), 2010, 156, 1600-1608.	1.8	56
13	The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Reports, 2009, 10, 997-1002.	4.5	55
14	Inhibitors of Bacterial Transcription Initiation Complex Formation. ACS Chemical Biology, 2013, 8, 1972-1980.	3.4	54
15	Compartmentalized distribution of the proteins controlling the presporeâ€specific transcription factor σ F of Bacillus subtilis. Genes To Cells, 1996, 1, 881-894.	1.2	49
16	Stage-specific fluorescence intensity of GFP and mCherry during sporulation In Bacillus Subtilis. BMC Research Notes, 2010, 3, 303.	1.4	48
17	Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Research, 2014, 42, 5151-5163.	14.5	46
18	In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein–Protein Interactions at the Peptide Level. Journal of Proteome Research, 2017, 16, 2457-2471.	3.7	44

#	Article	IF	CITATIONS
19	Bacterial subcellular architecture: recent advances and future prospects. Molecular Microbiology, 2004, 54, 1135-1150.	2.5	43
20	Proteinâ€protein interactions as antibiotic targets: A medicinal chemistry perspective. Medicinal Research Reviews, 2020, 40, 469-494.	10.5	42
21	A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 666-676.	1.8	40
22	Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition. Microbiology (United Kingdom), 2010, 156, 3532-3543.	1.8	34
23	Synthesis and biological activity of novel bis-indole inhibitors of bacterial transcription initiation complex formation. Organic and Biomolecular Chemistry, 2014, 12, 2882-2894.	2.8	34
24	Overproduction and purification of recombinant Bacillus subtilis RNA polymerase. Protein Expression and Purification, 2008, 59, 86-93.	1.3	32
25	Â, a New Subunit of RNA Polymerase Found in Gram-Positive Bacteria. Journal of Bacteriology, 2014, 196, 3622-3632.	2.2	31
26	RNA polymerase-induced remodelling of NusA produces a pause enhancement complex. Nucleic Acids Research, 2015, 43, 2829-2840.	14.5	31
27	The interaction of <i>Bacillus subtilis</i> Ïf ^A with RNA polymerase. Protein Science, 2009, 18, 2287-2297.	7.6	30
28	Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation. Bioorganic and Medicinal Chemistry, 2015, 23, 1763-1775.	3.0	30
29	Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nature Communications, 2020, 11, 6420.	12.8	29
30	Bacterial Sliding Clamp Inhibitors that Mimic the Sequential Binding Mechanism of Endogenous Linear Motifs. Journal of Medicinal Chemistry, 2015, 58, 4693-4702.	6.4	28
31	Selective enrichment and identification of cross-linked peptides to study 3-D structures of protein complexes by mass spectrometry. Journal of Proteomics, 2012, 75, 2205-2215.	2.4	26
32	The NusA:RNA polymerase ratio is increased at sites of rRNA synthesis inBacillus subtilis. Molecular Microbiology, 2005, 57, 366-379.	2.5	24
33	Bacterial Transcription Inhibitor of RNA Polymerase Holoenzyme Formation by Structure-Based Drug Design: From in Silico Screening to Validation. ACS Infectious Diseases, 2016, 2, 39-46.	3.8	24
34	Localization of rRNA Synthesis in Bacillus subtilis : Characterization of Loci Involved in Transcription Focus Formation. Journal of Bacteriology, 2003, 185, 2346-2353.	2.2	22
35	Subcellular Partitioning of Transcription Factors in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 4101-4110.	2.2	22
36	Synthesis and biological evaluation of 2,5-di(7-indolyl)-1,3,4-oxadiazoles, and 2- and 7-indolyl 2-(1,3,4-thiadiazolyl)ketones as antimicrobials. Bioorganic and Medicinal Chemistry, 2014, 22, 1672-1679.	3.0	22

#	Article	IF	CITATIONS
37	Synthesis and Antibacterial Evaluation of Novel 3-Substituted Ocotillol-Type Derivatives as Leads. Molecules, 2017, 22, 590.	3.8	21
38	Single-Step Selection of Drug Resistant Acinetobacter baylyi ADP1 Mutants Reveals a Functional Redundancy in the Recruitment of Multidrug Efflux Systems. PLoS ONE, 2013, 8, e56090.	2.5	20
39	Identification of inhibitors of bacterial RNA polymerase. Methods, 2015, 86, 45-50.	3.8	19
40	Dynamic relocalization of phage φ29 DNA during replication and the role of the viral protein p16.7. EMBO Journal, 2000, 19, 4182-4190.	7.8	17
41	Activation of Xer-recombination at dif: structural basis of the FtsKγ–XerD interaction. Scientific Reports, 2016, 6, 33357.	3.3	17
42	First-In-Class Inhibitor of Ribosomal RNA Synthesis with Antimicrobial Activity against Staphylococcus aureus. Biochemistry, 2017, 56, 5049-5052.	2.5	16
43	The interaction between RNA polymerase and the elongation factor NusA. RNA Biology, 2010, 7, 272-275.	3.1	14
44	Novel 3â€5ubstituted Ocotillolâ€Type Triterpenoid Derivatives as Antibacterial Candidates. Chemical Biology and Drug Design, 2014, 84, 489-496.	3.2	14
45	From indole to pyrrole, furan, thiophene and pyridine: Search for novel small molecule inhibitors of bacterial transcription initiation complex formation. Bioorganic and Medicinal Chemistry, 2016, 24, 1171-1182.	3.0	14
46	The NusA:RNA polymerase ratio is increased at sites of rRNA synthesis in Bacillus subtilis. Molecular Microbiology, 2005, 57, 366-379.	2.5	13
47	The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation. Transcription, 2010, 1, 66-69.	3.1	12
48	Small molecule inhibitors of bacterial transcription complex formation. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4302-4308.	2.2	12
49	Small-Molecule Inhibitors of the NusB–NusE Protein–Protein Interaction with Antibiotic Activity. ACS Omega, 2017, 2, 3839-3857.	3.5	12
50	Identification and validation of small molecule modulators of the NusB-NusE interaction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 162-167.	2.2	9
51	Homology modelling of RNA polymerase and associated transcription factors from Bacillus subtilis. Journal of Molecular Graphics and Modelling, 2005, 23, 297-303.	2.4	7
52	A vector system that allows simple generation of mutant Escherichia coli RNA polymerase. Plasmid, 2014, 75, 37-41.	1.4	7
53	<scp>AtfA</scp> , a new factor in global regulation of transcription in <scp><i>AtfA</i></scp> , a new factor in global regulation of transcription in <scp><i>AtfA</i></scp> , a new factor in global regulation of transcription in <scp>, 2014, 93, 1130-1143.</scp>	2.5	6
54	Mechanism of transcription modulation by the transcription-repair coupling factor. Nucleic Acids Research, 2022, 50, 5688-5712.	14.5	6

#	Article	IF	CITATIONS
55	Tandem affinity purification vectors for use in gram positive bacteria. Plasmid, 2008, 59, 54-62.	1.4	4
56	Sialylation of Asparagine 612 Inhibits Aconitase Activity during Mouse Sperm Capacitation; a Possible Mechanism for the Switch from Oxidative Phosphorylation to Glycolysis. Molecular and Cellular Proteomics, 2020, 19, 1860-1875.	3.8	4
57	RNA polymerases from low G+C gram-positive bacteria. Transcription, 2021, 12, 1-11.	3.1	3
58	Inhibitors of bacterial RNA polymerase transcription complex. Bioorganic Chemistry, 2022, 118, 105481.	4.1	3
59	Amino Alcohols as Potential Antibiotic and Antifungal Leads. Molecules, 2022, 27, 2050.	3.8	3
60	Subcellular Organisation in Bacteria. , 2008, , 1-42.		2
61	Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. MicrobiologyOpen, 2021, 10, e1251.	3.0	1
62	Imaging fluorescent protein fusions in live bacteria. Methods in Microbiology, 2012, 39, 107-126.	0.8	0