Xumu Zhang

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/334917/publications.pdf
Version: 2024-02-01

Ir-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope Investigations and Mechanistic
Studies. CCS Chemistry, 2023, 5, 1398-1410.

Remdesivir Metabolite GS-441524 Effectively Inhibits SARS-CoV-2 Infection in Mouse Models. Journal of Medicinal Chemistry, 2022, 65, 2785-2793.

Examination of Milstein Ru-PNN and Rh-Tribi/Tetrabi dual metal catalyst for
3 isomerization-linear-hydroformylation of C4 raffinate and internal olefins. Green Synthesis and
$6.8 \quad 4$
Catalysis, 2022, 3, 40-45.

Catalytic Asymmetric Hydrogenation of Tetrasubstituted Unsaturated Lactams: An Efficient Approach to Enantioenriched 3,4-Disubstituted Piperidines. Organic Letters, 2022, , .

Highly Enantioselective Rhodium(l)-Catalyzed Alder-ene-type Cycloisomerization of 1,7-Enynes. Organic Letters, 2022, 24, 869-874.

Ir/f-Ampha complex catalyzed asymmetric sequential hydrogenation of enones: a general access to chiral alcohols with two contiguous chiral centers. Chemical Science, 2022, 13, 1808-1814.

Direct asymmetric reductive amination of $\hat{I} \pm$-keto acetals: a platform for synthesizing diverse
7 ̂̂ \pm-functionalized amines. Chemical Communications, 2022, 58, 513-516.

Enantioselective synthesis of <i>cis<|i>-hexahydro-<i>| $\left.{ }^{3}<|\mathrm{i}\rangle-c a r b o l i n e ~ d e r i v a t i v e s ~<i>v i a</ i\right\rangle \mid r-c a t a l y z e d ~$ asymmetric hydrogenation. Chemical Communications, 2022, 58, 3286-3289.

9 Iridium-Catalyzed Hydroiodination and Formal Hydroamination of Olefins with <i> N -</i>lodo Reagents and Molecular Hydrogen: An Umpolung Strategy. Organic Letters, 2022, 24, 1842-1847.

Highly Enantioselective Synthesis of Nâ€ย!nprotected Unnatural $\hat{l} \pm \hat{A} € A m i n o$ Acid Derivatives by 10 Rutheniumâ \in Catalyzed Direct Asymmetric Reductive Amination. Angewandte Chemie - International 13.8 Edition, 2022, 61, .
Discovery and development of ferrocene-based tetradentate ligands for Ir-ca
hydrogenation of ketone. Green Synthesis and Catalysis, 2022, 3, 175-178.

Development of 〈i>C<|i><sub>2<|sub>-Symmetric Chiral Diphosphine Ligands for Highly
Enantioselective Hydrogenation Assisted by Ion Pairing. Organic Letters, 2022, 24, 2744-2749.

Goldâ€Catalyzed Desymmetric Lactonization of AlkynyImalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angewandte Chemie, 2022, 134, .

Goldâ€Catalyzed Desymmetric Lactonization of Alkynylmalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angewandte Chemie - International Edition, 2022, 61, .
13.8

7

Construction of a quaternary stereogenic center by asymmetric hydroformylation: a

Frontispiece: Highly Enantioselective Synthesis of Nâ€łnprotected Unnatural $\hat{I} \pm a ̂ € A m i n o$ Acid Derivatives by
17 Rutheniumâ€Catalyzed Direct Asymmetric Reductive Amination. Angewandte Chemie - International
13.8

Edition, 2022, 61, .

Frontispiz: Highly Enantioselective Synthesis of Nâ€łInprotected Unnatural $\hat{I} \pm a ̂ € A m i n o$ Acid Derivatives by

Highly efficient synthesis of chiral $\hat{1}$-amino phosphine derivatives via direct asymmetric reductive
amination with ammonium salts and H2. Green Synthesis and Catalysis, 2022, , .

Tetraphosphite ligand for ultrafast isomerization-hydroformylation of C4 raffinate under mild conditions. Journal of Catalysis, 2022, 413, 388-397.

Rhodiumâ€Catalyzed Chemoâ€; Regioâ€•and Enantioselective Hydroformylation of
21 Cyclopropylâ€Functionalized Trisubstituted Alkenes. Angewandte Chemie - International Edition, 2022,
13.8 61,.

22 Design of oxa-spirocyclic PHOX ligands for the asymmetric synthesis of lorcaserin via iridium-catalyzed asymmetric hydrogenation. Chemical Communications, 2021, 57, 195-198.

Enantioselective Hydrogenation of Endocyclic Enones: the Solution to a Historical Problem â€. Chinese Journal of Chemistry, 2021, 39, 933-936.

Highly Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of $\hat{12}$-Sulfonyl $-\hat{l} \pm, \hat{l}^{2}$-unsaturated Ketones:
Access to Chiral î3-Ketosulfones. Organic Letters, 2021, 23, 19-24.
$4.6 \quad 16$

Direct reductive amination of ketones with ammonium salt catalysed by $\mathrm{Cp}{ }^{*} \mid r(\langle\mathrm{scp}>\mathrm{iii}</ \mathrm{scp}>$)
complexes bearing an amidato ligand. Organic and Biomolecular Chemistry, 2021, 19, 8934-8939.

Recent advances on transition-metal-catalysed asymmetric reductive amination. Organic Chemistry
Frontiers, 2021, 8, 2328-2342.

Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[<i>b</i>]thiophene
1,1-Dioxides, with Mechanistic Studies. Organic Letters, 2021, 23, 668-675.

Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chemical Society Reviews, 2021, 50, 3211-3237.
38.1

147
1.9

Enantioselective Hydrogenation of Tetrasubstituted $\mathfrak{I ̂} \pm, \hat{l} 2 \hat{a ̂} € \mathfrak{U}$ nsaturated Carboxylic Acids Enabled by

Concise, scalable and enantioselective total synthesis of prostaglandins. Nature Chemistry, 2021, 13,
Copper-Catalyzed Enantioselective 1,2-Reduction of Cycloalkenones. Organic Letters, 2021, 23,
5658-5663.

Kilogram synthesis of (R)-(-)-denopamine by Ir/f-amphox catalyzed asymmetric hydrogenation. Green Synthesis and Catalysis, 2021, 2, 393-396.

A concise access to bridged $[2,2,1]$ bicyclic lactones with a quaternary stereocenter via stereospecific
hydroformylation. Nature Communications, 2021, 12, 5279.

A PEGylated N-heterocyclic carbene-gold(<scp>i</scp>) complex: an efficient catalyst for cyclization reaction in water. Organic Chemistry Frontiers, 2021, 8, 1216-1222.

Asymmetric hydrogenation of trifluoromethyl ketones: application in the synthesis of Odanacatib and
LX-1031. Organic Chemistry Frontiers, 2021, 8, 3705-3711.
$4.5 \quad 12$

Iridium-catalyzed asymmetric hydrogenation of $\langle i\rangle \mathrm{N}</ \mathrm{i}\rangle-\mathrm{phosphinoylimine}$. Organic Chemistry
Frontiers, 2021, 8, 1223-1226.

Double Asymmetric Hydrogenation of $\hat{I} \pm$-Iminoketones: Facile Synthesis of Enantiopure Vicinal Amino
Alcohols. ACS Catalysis, 2021, 11, 12729-12735.

Cobalt-Catalyzed Hydrogenative Transformation of Nitriles. ACS Catalysis, 2021, 11, 13761-13767.
11.2

Asymmetric hydrogenation of 1,4-diketones: facile synthesis of enantiopure 1,4-diarylbutane-1,4-diols.
Chemical Communications, 2021, 58, 262-265.

Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation. , 2021, , .

Copper-Catalyzed Asymmetric Hydrosilylation of $\mathfrak{1}$-Nitroethyl Aryl Ketones. Organic Letters, 2020, 22,
858-862.

Rh-Catalyzed Asymmetric Hydrogenation of Unsaturated Medium-Ring NH Lactams: Highly
50 Enantioselective Synthesis of N-Ünprotected 2,3-Dihydro-1,5-benzothiazepinones. Organic Letters, 2020,
4.6

22, 920-923.
Enantioselective synthesis of chiral multicyclic $\hat{\imath}$-lactones <i>via</i> dynamic kinetic resolution of racemic ${ }^{3} 3$-keto carboxylic acids. Organic Chemistry Frontiers, 2020, 7, 104-108.
4.5

Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation.
Chinese Chemical Letters, 2020, 31, 1859-1862.

Iridiumâ€Catalyzed Cycloisomerization of Alkynoic Acids: Synthesis of Unsaturated Lactones. Advanced
Synthesis and Catalysis, 2020, 362, 782-788.
4.3 13

Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic
Resolution Combined. Angewandte Chemie, 2020, 132, 18323-18328.

55	Direct catalytic asymmetric synthesis of $\hat{ \pm} \pm$-chiral primary amines. Chemical Society Reviews, 2020, 49, 6141-6153.	38.1	125
56	Ni-Catalyzed asymmetric reduction of $\hat{I}_{ \pm}$-keto-1̂2-lactams<i>via</i>DKR enabled by proton shuttling. Chemical Communications, 2020, 56, 15557-15560.	4.1	9
57	<i>C1</i〉-Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model. ACS Catalysis, 2020, 10, 13794-13799.	11.2	45
58	Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Organic Letters, 2020, 22, 6479-6483.	4.6	37
59	Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation. Organic Letters, 2020, 22, 8796-8801.	4.6	13
60	Noncovalent Interaction-Assisted Ferrocenyl Phosphine Ligands in Asymmetric Catalysis. Accounts of Chemical Research, 2020, 53, 1905-1921.	15.6	47
61	Iridium-Catalyzed Asymmetric Hydrogenation of $\hat{I}_{ \pm}$-Fluoro Ketones via a Dynamic Kinetic Resolution Strategy. Organic Letters, 2020, 22, 7230-7233.	4.6	14
62	Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity. ACS Catalysis, 2020, 10, 11153-11161.	11.2	41
63	Asymmetric Hydrogenation of 2-Aryl-3-phthalimidopyridinium Salts: Synthesis of Piperidine Derivatives with Two Contiguous Stereocenters. Organic Letters, 2020, 22, 8882-8887.	4.6	14

73

Rhodium-catalyzed asymmetric hydrogenation of exocyclic $\hat{l} \pm, \hat{\imath}$-unsaturated carbonyl compounds. Organic and Biomolecular Chemistry, 2020, 18, 856-859.
2.8

Rutheniumâ€Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones
74 with Ammonium Salts and $\mathrm{H}\langle$ sub> $2</$ sub \rangle. Angewandte Chemie - International Edition, 2020, 59,
13.8

56
5321-5325.
75 Rutheniumâ€Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones
with Ammonium Salts and H 2. Angewandte Chemie, 2020, 132, 5359-5363.

76 Iridiumâ€Catalyzed Enantioselective Hydrogenation of Oxocarbenium lons: A Case of lonic
Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 6108-6114.
8

Rhodium-Catalyzed Enantioselective Anti-Markovnikov Hydroformylation of $̂$ Î-Substituted Acryl Acid
Derivatives. Organic Letters, 2020, 22, 1108-1112.
$4.6 \quad 19$

Kinetic Resolution of Racemic 3,4-Disubstituted 1,4,5,6-Tetrahydropyridine and 3,4-Disubstituted 1,4-
Dihydropyridines via Rh-Catalyzed Asymmetric Hydrogenation. ACS Catalysis, 2020, 10, 2603-2608.
11.214
$79 \quad \begin{aligned} & \text { Iridiumâ€Catalyzed Enantioselective Hydrogenation of Oxocar } \\ & \text { Hydrogenation. Angewandte Chemie, 2020, 132, 6164-6170. }\end{aligned}$ 2.0 580 Highly Enantioselective Hydrogenation of <i>tetra<|i>-and <i>tri< $|\mathrm{i}\rangle-S u b s t i t u t e d ~ \hat{I} \pm, \hat{\mathrm{l}} 2$-UnsaturatedCarboxylic Acids with 〈i>oxa<|i〉-Spiro Diphosphine Ligands. CCS Chemistry, 2020, 2, 468-477.
81 Recent Advances of Nickel-Catalyzed Homogeneous Asymmetric Hydrogenation. Chinese Journal of Organic Chemistry, 2020, 40, 1096. 1.3 25
Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of 1,1-Disubstituted Allylic 8529-8533.
83 Asymmetric Hydrocyanation of Alkenes without HCN. Angewandte Chemie, 2019, 131, 11044-11047. 2.0
6
Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of ChiralCyclic Sulfamidates. IScience, 2019, 19, 63-73.

Efficient synthesis of chiral 2,3-dihydro-benzo[<i>b</i>]thiophene 1,1-dioxides <i>via</i>Rh-catalyzed
7.4

Asymmetric Hydrocyanation of Alkenes without HCN. Angewandte Chemie - International Edition, 2019,
97 Synthesis of Chiral 1 ²-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2019, 21, 3923-3926.
26
98 Efficient access to chiral dihydrobenzoxazinones via Rh-catalyzed hydrogenation. RSC Advances, 2019,9, 15466-15469.
99 Highly efficient Ir-catalyzed asymmetric hydrogenation of benzoxazinones and derivatives with aBrÂnsted acid cocatalyst. Chemical Science, 2019, 10, 4328-4333.$7.4 \quad 25$
100 Efficient Access to Chiral 1 ̂â $€ B o r y l a t e d ~ C a r b o x y l i c ~ E s t e r s ~ v i a ~ R h a ̂ ~ € C a t a l y z e d ~ H y d r o g e n a t i o n . ~ A d v a n c e d ~$ Synthesis and Catalysis, 2019, 361, 2844-2848.
101 Asymmetric hydrogenation of $\hat{1} \pm, \hat{1}^{2}$-unsaturated sulfones by a rhodium/thioureaâ $\epsilon^{\text {"bisph}}$ "
Organic Chemistry Frontiers, 2019, 6, 1438-1441. 4.5 19
102 Enantioselective Rhodium-Catalyzed Cycloisomerization of 1,6-Allenynes to access 5/6-Fused
Bicycle[4.3.0]nonadienes. Nature Communications, 2019, 10, 949.12.816
$3.2 \quad 16$Enantioselective Synthesis of 4-Methyl-3,4-dihydroisocoumarin via Asymmetric Hydroformylation of
103 Styrene Derivatives. Journal of Organic Chemistry, 2019, 84, 4915-4920.
Homogeneous Hydrogenation with a Cobalt/Tetraphosphine Catalyst: A Superior Hydride Donor for
Polar Double B
$20424-20433$.13.7
105 Recent Advances in Asymmetric Hydroformylation. Chinese Journal of Organic Chemistry, 2019, 39, 1568.1.3Highly Enantioselective Synthesis of Chiral $̂ 3$-Lactams by Rh-Catalyzed Asymmetric Hydrogenation. ACS

$$
\begin{aligned}
& \text { Iridiumâ€Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction } \\
& \text { of Chiral Halohydrins. Advanced Synthesis and Catalysis, 2018, 360, 2119-2124. }
\end{aligned}
$$

4.3

Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of
110 Alkyl Aryl Ketones with Ammonium Salts and Molecular H ₂. Journal of the American
13.7

Chemical Society, 2018, 140, 2024-2027.
111 Iridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic $\hat{l} \pm$-keto esters. Organic Chemistry Frontiers, 2018, 5, 1209-1212.

Rhodium-catalyzed asymmetric hydrogenation of $\hat{1}$-cyanocinnamic esters with the assistance of a single hydrogen bond in a precise position. Chemical Science, 2018, 9, 1919-1924.
7.4

Highly enantioselective Ir/f-amphox-catalyzed hydrogenation of ketoamides: efficient access to chiral hydroxy amides. Organic Chemistry Frontiers, 2018, 5, 2000-2003.
$4.5 \quad 16$

BrÃnsted-Acid-Promoted Rh-Catalyzed Asymmetric Hydrogenation of N-Unprotected Indoles: A
Cocatalysis of Transition Metal and Anion Binding. Organic Letters, 2018, 20, 2143-2147.
4.6

62

Design and Application of Hybrid Phosphorus Ligands for Enantioselective Rh-Catalyzed
115 Anti-Markovnikov Hydroformylation of Unfunctionalized 1,1-Disubstituted Alkenes. Journal of the
$13.7 \quad 64$ American Chemical Society, 2018, 140, 4977-4981.

116 Enantioselective and Diastereoselective Ir-Catalyzed Hydrogenation of $\hat{l}_{ \pm}$-Substituted \hat{I}^{2}-Ketoesters via Dynamic Kinetic Resolution. Organic Letters, 2018, 20, 1888-1892.

117 A mechanistic investigation of an Iridium-catalyzed asymmetric hydrogenation of pyridinium salts.
Tetrahedron, 2018, 74, 2182-2190.

Highly enantioselective transfer hydrogenation of racemic $\hat{I} \pm$-substituted $\hat{2}$-keto sulfonamides <i>via<|i>
118 dynamic kinetic resolution. Chemical Communications, 2018, 54, 3883-3886.
4.1

21

> 119 Enantioselective Palladium-Catalyzed Decarboxylative Allylation of $̂$ ²-Keto Esters Assisted by a
> Thiourea. Synlett, 2018, 29, 51-56.

Enantioselective total synthesis of (â^)-kainic acid and (+)-acromelic acid C <i>via</i>
$120 \mathrm{Rh}(<\mathrm{scp}>\mathrm{i}</ \mathrm{scp}\rangle)$-catalyzed asymmetric enyne cycloisomerization. Chemical Communications, 2018, 54,
4.1
1.8 727-730.

Development of a novel secondary phosphine oxideấ $\epsilon^{\prime \prime}$ ruthenium (<scp>ii</scp>) catalyst and its
application for carbonyl reduction. Chemical Communications, 2018, 54, 535-538.
$4.1 \quad 18$

Synthesis of chiral seven-membered 1 Î-substituted lactams <i>via<<i> Rh-catalyzed asymmetric hydrogenation. Organic and Biomolecular Chemistry, 2018, 16, 8819-8823.

Iridium-Catalyzed Asymmetric Hydrogenation of Tetrasubstituted $\hat{\ddagger} \pm$-Fluoro-î2-enamino Esters: Efficient
123 Access to Chiral $\hat{I}_{ \pm}-$Fluoro- \hat{I}^{2}-amino Esters with Two Adjacent Tertiary Stereocenters. Organic Letters,
$4.6 \quad 24$
2018, 20, 6349-6353.
Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary $\hat{2} \hat{a} €$ Amino Lactams.
Angewandte Chemie - International Edition, 2018, 57, 14193-14197.

Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary $̂ 2$ ấAmino Lactams.
Angewandte Chemie, 2018, 130, 14389-14393.

131	Scope and Mechanism on Iridiumâ€fâ€Amphamide Catalyzed Asymmetric Hydrogenation of Ketones. Journal of Chemistry, 2018, 36, 851-856.	4.9	44
132	Rhodiumâ€€atalyzed Highly Regioâ€•and Enantioselective Hydrogenation of Tetrasubstituted Alleny Sulfones: An Efficient Access to Chiral Allylic Sulfones. Angewandte Chemie - International Edition, 2018, 57, 13248-13251.	13.8	35
133	Iridium/fâ€Ampholâ€catalyzed Efficient Asymmetric Hydrogenation of Benzoâ€fused Cyclic Ketones. Advanced Synthesis and Catalysis, 2018, 360, 4319-4324.	4.3	22

134 Iridium/f-Amphox-Catalyzed Asymmetric Hydrogenation of Styrylglyoxylamides. Synlett, 2018, 29, 2203-2207.

A one-pot process for the enantioselective synthesis of tetrahydroquinolines and
135 tetrahydroisoquinolines <i>via</i> asymmetric reductive amination (ARA). Chemical Communications,
4.1 2018, 54, 7247-7250.

Design and Synthesis of Chiral <i>oxa</i>-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric
136 Reduction of Bringmannâ $€^{T M}$ s Lactones with Molecular H ₂. Journal of the American Chemical
13.7 Society, 2018, 140, 8064-8068.

137 Asymmetric hydrogenation of î̀-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols. Organic Chemistry Frontiers, 2017, 4, 555-559.

Rhodium-catalyzed enantioselective hydrogenation of $\hat{I}_{ \pm}$-amino acrylonitriles: an efficient approach to synthesizing chiral $\hat{ \pm} \pm$-amino nitriles. Chemical Communications, 2017, 53, 1313-1316.

Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Tetrasubstituted Cyclic Enamides: Efficient Access to Chiral Cycloalkylamine Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 597-602.

Iridium catalysts with modular axial-unfixed biphenyl phosphineâ€"oxazoline ligands: asymmetric hydrogenation of $\hat{I} \pm, \hat{\imath}^{2}$-unsaturated carboxylic acids. Organic Chemistry Frontiers, 2017, 4, 627-630.

Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands. Organic Letters, 2017, 19, 690-693.

Rh-Catalyzed Asymmetric Hydrogenation of $\hat{I}_{ \pm}$-Substituted Vinyl Sulfones: An Efficient Approach to Chiral Sulfones. Organic Letters, 2017, 19, 1024-1027. Î士-amino ketones. Organic Chemistry Frontiers, 2017, 4, 1499-1502.
145
146

Enzymeâ€!nspired Chiral Secondaryâ€Phosphineâ€Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation. Angewandte Chemie, 2017, 129, 6912-6916.
2.0

22

Enzymeâ€łnspired Chiral Secondaryâ€Phosphineâ€Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2017, 56, 6808-6812.

$147 \quad$| Rh/DuanPhos-Catalyzed Asymmetric Hydrogenation of $\hat{\imath}^{2}$-Acetylamino Vinylsulfides: |
| :--- |
| Chiral $\hat{\imath}^{2}$-Acetylamino Sulfides. Organic Letters, 2017, 19, 2877-2880. | Letters, 2017, 19, 2548-2551.

149	Rhodium-catalyzed asymmetric hydrogenation of tetrasubstituted $\hat{\imath}$ 2-acetoxy- $\hat{ \pm}$-enamido esters and efficient synthesis of droxidopa. Chemical Communications, 2017, 53, 8136-8139.	4.1	24
150	Enantioselective Synthesis of Chiral 3â€Substitutedâ€ßâ€silylpropionic Esters <i>via</i> Rhodium/Bisphosphineâ€đhioureaâ€€atalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 2585-2589.	4.3	14
151	Enantioselective Nickel-Catalyzed Mizorokiâ€"Heck Cyclizations To Generate Quaternary Stereocenters. Organic Letters, 2017, 19, 3338-3341.	4.6	54
152	Cobalt-catalyzed (Z)-selective semihydrogenation of alkynes with molecular hydrogen. Chemical Communications, 2017, 53, 4612-4615.	4.1	57
153	Asymmetric hydrogenation of maleic anhydrides catalyzed by Rh/bisphosphine-thiourea: efficient construction of chiral succinic anhydrides. Chemical Communications, 2017, 53, 4226-4229.	4.1	24
154	Efficient synthesis of (S,R)-Bn-Yanphos and Rh/(S,R)-Bn-Yanphos catalyzed asymmetric hydroformylation of vinyl heteroarenes. Organic Chemistry Frontiers, 2017, 4, 288-291.	4.5	20
155	Enantioselective Iridium-Catalyzed Hydrogenation of $\hat{l} \pm-K e t o ~ A m i d e s ~ t o ~ \hat{l} \pm-H y d r o x y ~ A m i d e s . ~ O r g a n i c ~ L e t t e r s, ~$ 2017, 19, 5920-5923.	4.6	51
156	Pyridine-Directed Asymmetric Hydrogenation of 1,1-Diarylalkenes. Organic Letters, 2017, 19, 5062-5065.	4.6	29
157	Nickel-Catalyzed Enantioselective Hydrogenation of î2-(Acylamino)acrylates: Synthesis of Chiral $\hat{1}^{2}$-Amino Acid Derivatives. Organic Letters, 2017, 19, 5130-5133.	4.6	58

158 Highly efficient synthesis of chiral aromatic ketones via Rh-catalyzed asymmetric hydrogenation of
4.1

24
12,12-disubstituted enones. Chemical Communications, 2017, 53, 9258-9261.
4.124
$159 \mathrm{Rh} /$ SPO-WudaPhos-Catalyzed Asymmetric Hydrogenation of $\hat{l}_{ \pm}$-Substituted Ethenylphosphonic Acids via Noncovalent lon-Pair Interaction. Organic Letters, 2017, 19, 4375-4378.
4.6

A new ferrocenyl bisphosphorus ligand for the asymmetric hydrogenation of
Î̀-methylene-1̂3-keto-carboxylic acids. Chemical Communications, 2017, 53, 9785-9788.
4.1

25

Highly Enantioselective Asymmetric Hydrogenation of Carboxy-Directed $\hat{I}_{ \pm}, \hat{\imath} \pm$-Disubstituted Terminal
Olefins via the Ion Pair Noncovalent Interaction. Organic Letters, 2017, 19, 6474-6477.
4.6

163	Nickel-catalyzed asymmetric hydrogenation of $\hat{2}$-acylamino nitroolefins: an efficient approach to chiral amines. Chemical Science, 2017, 8, 6419-6422.	7.4	82
164	Access to Chiral Seven-Member Cyclic Amines via Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2017, 19, 3855-3858.	4.6	51
165	Direct Catalytic Hydrogenation of Simple Amides: A Highly Efficient Approach from Amides to Amines and Alcohols. Chemistry - A European Journal, 2017, 23, 546-548.	3.3	46
166	Readily Accessible and Highly Efficient Ferroceneâ€Based Aminoâ€Phosphineâ€Alcohol (fâ€Amphol) Ligands for Iridiumâ€Catalyzed Asymmetric Hydrogenation of Simple Ketones. Chemistry - A European Journal, 2017, 23, 970-975.	3.3	67
167	Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts. Molecules, 2016, 21, 1327.	3.8	22
168	Direct Asymmetric Reductive Amination for the Synthesis of Chiral î2â€Arylamines. Angewandte Chemie, 2016, 128, 5395-5398.	2.0	22
169	International Edition, 2016, 55, 5309-5312.	13.8	77
170	Rhodiumâ€€atalyzed Desymmetrization by Hydroformylation of Cyclopentenes: Synthesis of Chiral Carbocyclic Nucleosides. Angewandte Chemie, 2016, 128, 6621-6624.	2.0	5
171	Rhodium/Yanphos-Catalyzed Asymmetric Interrupted Intramolecular Hydroaminomethylation of <i>trans</i>-1,2-Disubstituted Alkenes. Journal of the American Chemical Society, 2016, 138, 9017-9020.	13.7	66
172	Highly Selective Conversion of Cellobiose and Cellulose to Hexitols by Ru-Based Homogeneous Catalyst under Acidic Conditions. Industrial \& Engineering Chemistry Research, 2016, 55, 5263-5270.	3.7	12
173	Rhodium-catalyzed asymmetric hydrogenation of unprotected $\hat{\imath}^{2}$-enamine phosphonates. Organic and Biomolecular Chemistry, 2016, 14, 4582-4584.	2.8	16
174	Enantioselective synthesis of $\hat{1}$ 2-substituted chiral allylic amines via Rh-catalyzed asymmetric hydrogenation. Chemical Communications, 2016, 52, 11850-11853.	4.1	22
175	Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 2016, 3, 1359-1370.	4.5	64

$\left.\begin{array}{l}\text { Rhodiumâ€catalyzed Asymmetric Hydrogenation of } \hat{I} \pm a ̂ \in D e h y d r o a m i n o ~ K e t o n e s: ~ A ~ G e n e r a l ~ A p p r o a c h ~ t o ~ C h i r a l ~\end{array}\right\}$

Tunable P-Chiral Bisdihydrobenzooxaphosphole Ligands for Enantioselective Hydroformylation.
Organic Letters, 2016, 18, 3346-3349.

Selective Rhodium-Catalyzed Hydroformylation of Alkynes to $\hat{l} \pm, \hat{l}^{2}$-Unsaturated Aldehydes with a Tetraphosphoramidite Ligand. Organic Letters, 2016, 18, 3290-3293.

Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones. Organic Letters, 2016, 18, 2938-2941.

Rhodiumâ€Catalyzed Desymmetrization by Hydroformylation of Cyclopentenes: Synthesis of Chiral Carbocyclic Nucleosides. Angewandte Chemie - International Edition, 2016, 55, 6511-6514.
13.8

New synthetic strategy for chiral 2-oxazolidinones derivatives via rhodium-catalyzed asymmetric hydrogenation. Tetrahedron Letters, 2016, 57, 658-662.

Synthesis of Chiral $\hat{\imath}^{2}$-Amino Nitroalkanes via Rhodium-Catalyzed Asymmetric Hydrogenation. Organic
Letters, 2016, 18, 40-43.

Strong $\operatorname{Br} \tilde{A}_{s} n s t e d$ acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed
by a Rhâ€"thiourea chiral phosphine complex via anion binding. Chemical Science, 2016, 7, 3047-3051.

Hydrogenation of Aldehydes Catalyzed by an Available Ruthenium Complex. Organic Letters, 2016, 18,
1518-1521.

New tetraphosphite ligands for regioselective linear hydroformylation of terminal and internal olefins. RSC Advances, 2016, 6, 14559-14562.

Highly enantioselective hydrogenation of $\hat{I} \pm$-oxy functionalized $\hat{l}_{ \pm}, \hat{2}$-unsaturated acids catalyzed by a
191 ChenPhosâ $€^{\prime \prime}$ Rh complex in $\left.\mathrm{CF}\langle s u b>3</ s u b\rangle \mathrm{CH}\langle s u b\rangle 2</ s u b\right\rangle \mathrm{OH}$. Chemical Communications, 2016, 52,
4.1 2273-2276.

192 Ferrocenyl chiral bisphosphorus ligands for highly enantioselective asymmetric hydrogenation via noncovalent ion pair interaction. Chemical Science, 2016, 7, 6669-6673.

Highly enantioselective synthesis of non-natural aliphatic $\hat{I} \pm$-amino acids via asymmetric hydrogenation. Organic and Biomolecular Chemistry, 2015, 13, 7624-7627.

Highly Efficient Synthesis of Chiral $\hat{\imath} \pm-C F<s u b>3</ s u b>$ Amines via Rh-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2015, 17, 1154-1156.
 of Conjugated Enamides. Angewandte Chemie - International Edition, 2015, 54, 1885-1887.

Highly Efficient Tetradentate Ruthenium Catalyst for Ester Reduction: Especially for Hydrogenation of Fatty Acid Esters. Organic Letters, 2015, 17, 454-457.

First Iridium-Catalyzed Highly Enantioselective Hydrogenation of $\hat{2}$-Nitroacrylates. Organic Letters, 2015, 17, 3782-3785.

A new designed hydrazine group-containing ruthenium complex used for catalytic hydrogenation of esters. Chemical Communications, 2015, 51, 12193-12196.
199 Highly Enantioselective Hydrogenation of $\langle i\rangle \hat{l}_{i}\langle\mid i\rangle-$ Alkoxy Tetrasubstituted Enamides Catalyzed by a
207 Asymmetric Hydrogenation of Pyridinium Salts with an Iridium Phosphole Catalyst. AngewandteChemie - International Edition, 2014, 53, 12761-12764.
$13.8 \quad 86$
Synthesis and application of a new triphosphorus ligand for regioselective linear hydroformylation:
208 a potential way for the stepwise replacement of PPh₃ for industrial use. Organic
4.5 Chemistry Frontiers, 2014, 1, 947-951.
209 Rhodium-Catalyzed Asymmetric Hydrogenation of \hat{I}^{2}-Acetylamino Acrylosulfones: A Practical Approachto Chiral ${ }^{12}$-Amido Sulfones. ACS Catalysis, 2014, 4, 1570-1573.
11.2 53
Highly Enantioselective Synthesis of Chiral Cyclic Allylic Amines via Rh-Catalyzed Asymmetric4.6

Enantioselective hydrogenation of $\hat{I} \pm, \hat{\imath}^{2}$-disubstituted nitroalkenes. Chemical Communications, 2014, 50,

Rhâ€Catalyzed Highly Enantioselective Hydrogenation of Nitroalkenes under Basic Conditions.
Chemistry - A European Journal, 2013, 19, 10840-10844.

Cascade Synthesis of Fenpiprane and Related Pharmaceuticals via Rhodium-Catalyzed
Hydroaminomethylation. Organic Letters, 2013, 15, 1036-1039.
4.6

A Novel Triphosphoramidite Ligand for Highly Regioselective Linear Hydroformylation of Terminal and
Internal Olefins. Organic Letters, 2013, 15, 1048-1051.

Rhodium-Catalyzed Enantioselective Hydrogenation of Oxime Acetates. Organic Letters, 2013, 15, 484-487.

Catalytic Enantioselective Desymmetrization of <i>Meso</i>Cyclic Anhydrides via Iridium-Catalyzed Hydrogenation. Organic Letters, 2013, 15, 1740-1743.

Rhodiumâ€€atalyzed Asymmetric Hydroformylation of 1,lâ€Disubstituted Allylphthalimides: A Catalytic Route to \hat{I}^{2} ³â€Amino Acids. Advanced Synthesis and Catalysis, 2013, 355, 679-684.
4.3

Rhodium-Catalyzed Highly Regioselective Hydroaminomethylation of Styrenes with Tetraphosphorus Ligands. Organic Letters, 2013, 15, 3078-3081.

Rhodium-Catalyzed Enantioselective Hydrogenation of ${ }^{2}$-Acylamino Nitroolefins: A New Approach to Chiral ${ }^{2}$-Amino Nitroalkanes. Organic Letters, 2013, 15, 5524-5527.

225 Asymmetric Hydrogenation of Imines. Topics in Current Chemistry, 2013, 343, 103-144.

A Simple Synthetic Route to Enantiopure $\hat{I} \pm a ̂ € H y d r o x y ~ K e t o n e ~ D e r i v a t i v e s ~ b y ~ A s y m m e t r i c ~ H y d r o g e n a t i o n . ~$
Advanced Synthesis and Catalysis, 2012, 354, 3211-3215.

227 Highly Regioselective Isomerizationâ "Hydroaminomethylation of Internal Olefins Catalyzed by Rh $_{\text {"He }}$
Complex with Tetrabi-Type Phosphorus Ligands. Organic Letters, 2012, 14, 102-105.

Highly Enantioselective Hydrogenation of 1 2-Ketoenamides with the Rh-ZhangPhos Catalyst. ACS
Catalysis, 2012, 2, 1343-1345.
Access to Both Enantiomers of $\hat{I} \pm a ̂ € C h l o r o a ̂ € \hat{\imath}^{2} a ̂ € k e t o$ Esters with a Single Chiral Ligand: Highly Efficient
229 Enantioselective Chlorination of Cyclic $\hat{1}^{2}$ â€Keto Esters Catalyzed by Chiral Copper(II) and Zinc(II)
Complexes of a Spiroâ€2, 2â€² â€bischromanâ€Based Bisoxazoline Ligand. Advanced Synthesis and Catalysis, 2012 , 4.3 354. 1980-1986.

Highly Enantioselective Hydrogenation of $\hat{I}^{2}, \hat{l}^{2} \hat{a} €$ Disubstituted Nitroalkenes. Angewandte Chemie International Edition, 2012, 51, 8573-8576.

New Tetraphosphorus Ligands for Highly Linear Selective Hydroformylation of Allyl and Vinyl Derivatives. Chemistry - A European Journal, 2012, 18, 9992-9998.

Spiro-2,2â€2-bichroman-based bisoxazoline (SPANbox) ligands for Znll-catalyzed enantioselective hydroxylation of $\hat{1}^{2}$-keto esters and 1,3-diester. Chemical Science, 2011, 2, 1141.

Synthesis of Enamides via Cul-Catalyzed Reductive Acylation of Ketoximes with NaHSO3. Journal of Organic Chemistry, 2011, 76, 339-341.

235 Enantioselective Synthesis of Optically Pure $\hat{\imath}^{2}$-Amino Ketones and $\hat{\imath} 3$-Aryl Amines by Rh-Catalyzed Asymmetric Hydrogenation. Journal of Organic Chemistry, 2011, 76, 332-334.Letters, $2011,52,468$.

Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by BrÃnsted Acids. Journal of the American Chemical Society, 2010, 132, 8909-8911.
253

> Synthesis and Application of Tetraphosphane Ligands in Rhodiumâ€Catalyzed Hydroformylation of
> 253 Terminal Olefins: High Regioselectivity at High Temperature. Chemistry - A European Journal, 2010, 16,
> $4938-4943$.
3.3

41

254 Highly Efficient Rh[|]â€Catalyzed Asymmetric Hydrogenation of $\hat{1} 2 \hat{a} € A m i n o$ Acrylonitriles. Chemistry - A European Journal, 2010, 16, 5301-5304.
3.3

28

255 Rhodiumâ€Catalyzed Asymmetric Hydroformylation of $\langle i\rangle \mathrm{N}</ \mathrm{i}\rangle$ â€Allylamides: Highly Enantioselective
255 Approach to $\hat{1}^{2}<$ sup $>2</$ sup $>$ â $€ A m i n o ~ A l d e h y d e s . ~ A n g e w a n d t e ~ C h e m i e ~-~ I n t e r n a t i o n a l ~ E d i t i o n, ~ 2010, ~ 49, ~$
13.8 4047-4050.

Electronâ€Đonating and Rigid Pâ€Stereogenic Bisphospholane Ligands for Highly Enantioselective
256 Rhodiumâ€€atalyzed Asymmetric Hydrogenations. Angewandte Chemie - International Edition, 2010, 49,
6421-6424.
257 Synthesis of a new type of P,N-ligand with a spiro skeleton for Ir-catalyzed asymmetric
1.8
hydrogenations. Tetrahedron: Asymmetry, 2010, 21, 1529-1533.

Developing chiral phosphorus ligands for asymmetric hydrogenations. Pure and Applied Chemistry,
2010, 82, 1429-1441.
1.9

19
258

Iridiumâ^Monodentate Phosphoramidite-Catalyzed Asymmetric Hydrogenation of Substituted
259 Benzophenone Nâ^H Imines. Journal of the American Chemical Society, 2010, 132, 2124-2125.
$13.7 \quad 123$

Design and synthesis of a novel three-hindered quadrant bisphosphine ligand and its application in asymmetric hydrogenation. Chemical Communications, 2010, 46, 8555.

261 Asymmetric hydrogenation of ketones catalyzed by a ruthenium(ii)-indanâ€"ambox complex. Chen
Communications, 2010, 46, 3979 .
262 Suzuki Coupling of Heteroaromatic Chlorides Using Highly Electron-Donating ClickPhos Ligands.
Synthesis, 2009, 2009, 3094-3098.

> Highly Regioselective and Rapid Hydroformylation of Alkyl Acrylates Catalyzed by a Rhodium Complex
> with a Tetraphosphorus Ligand. Advanced Synthesis and Catalysis, 2009, 351, 537-540.

Axial Chirality Control by 2,4â€Pentanediol for the Alternative Synthesis of $\mathrm{C}<$ sub> $3</$ sub>*â€JunePhos
264 Chiral Diphosphine Ligands and Their Applications in Highly Enantioselective Rutheniumâ€ atalyzed
4.3 Hydrogenation of $\hat{1} 2 \hat{a} € K e t o$ Esters. Advanced Synthesis and Catalysis, 2009, 351, 2553-2557.
265 Highly Efficient and Enantioselective Iridiumâ€Catalyzed Asymmetric Hydrogenation of

4.3

59

<i>N<|i>â€Arylimines. Advanced Synthesis and Catalysis, 2009, 351, 3123-3127.

Matching and Mismatching Effects of Hybrid Chiral Biaxial Bisphosphine Ligands in Enantioselective Hydrogenation of Ketoesters. Chemistry - A European Journal, 2009, 15, 7302-7305.
3.3

25277 Enantioselective Hydrogenation of Nâ^H Imines. Journal of the American Chemical Society, 2009, 131,13.7171
Chiral BrÃsnsted Acid Catalyzed Asymmetric Baeyerâ€"Villiger Reaction of 3â€Substituted Cyclobutanones 278 by Using Aqueous H <sub> $2</ s u b>\mathrm{O}\langle\mathrm{sub}>2</ s u b>$. Angewandte Chemie - International Edition, 2008, 47, 13.8 205 2840-2843.
279 Development of a new class of C1-symmetric bisphosphine ligands for rhodium-catalyzed asymmetric 1.9 33
hydrogenation. Tetrahedron, 2008, 64, 6943-6948.
A Convenient Synthesis and the Asymmetric Hydrogenation of $\langle\mathrm{i}\rangle \mathrm{N}</ \mathrm{i}\rangle-$ Phthaloyl Dehydroamino Acid
Esters. Organic Letters, 2008, 10, 3033-3036. 280Convenient Divergent Strategy for the Synthesis of TunePhos-Type Chiral Diphosphine Ligands and281 Their Applications in Highly Enantioselective Ru-Catalyzed Hydrogenations. Journal of Organic3.2Chemistry, 2008, 73, 1143-1146.An Unexpected Phosphine-Catalyzed [3 + 2] Annulation. Synthesis of Highly Functionalized
4.6

292 Rh-Catalyzed Highly Enantioselective Synthesis of 3-Arylbutanoic Acids. Angewandte Chemie, 2007, 119, 2677-2680.

Retaining Catalyst Performance at High Temperature: The Use of a Tetraphosphine Ligand in the Highly
 293 Regioselective Hydroformylation of Terminal Olefins. Advanced Synthesis and Catalysis, 2007, 349,

$4.3 \quad 32$
1582-1586.

294 New diphosphite ligands for enantioselective asymmetric hydroformylation. Tetrahedron Letters,
2007, 48, 4781-4784.
1.4

Triazole-Based Monophosphine Ligands for Palladium-Catalyzed Cross-Coupling Reactions of Aryl
295 Triazole-Based Monophosphine Ligands for Palladium-Catalyzed
$3.2 \quad 172$297 Practical synthesis of chiral 9,9â€2-spirobixanthene-1,1â€2-diol. Organic and Biomolecular Chemistry, 2006, 4,
4474-4477.
299 Chiral bisphospholane ligands (Me-ketalphos): synthesis of their $\mathrm{Rh}(\mathrm{I})$ complexes and applications inasymmetric hydrogenation. Tetrahedron, 2006, 62, 868-871.
11
300 Highly enantioselective hydrogenation of N-phthaloyl enamides. Tetrahedron Letters, 2006, 47, 821-823.1.4
Cu(1)-Catalyzed Highly Exo-Selective and Enantioselective [3+2] Cycloaddition of Azomethine Ylides

[^0]| 307 | Asymmetric Hydrogenation of Pyridines: Enantioselective Synthesis of Nipecotic Acid Derivatives. European Journal of Organic Chemistry, 2006, 2006, 4343-4347. | 2.4 | 85 |
| :---: | :---: | :---: | :---: |
| 308 | Highly Enantioselective Hydrogenation of $\mathfrak{I ̂} \pm$-Keto Esters Catalyzed by Ru-Tunephos Complexes. Synlett, 2006, 2006, 1169-1172. | 1.8 | 1 |
| 309 | Enantioselective syntheses of 3,4,5-trisubstituted $\hat{1} 3$-lactones: formal synthesis of (\hat{a}^{\wedge})-blastmycinolactol. Tetrahedron Letters, 2005, 46, 1823-1826. | 1.4 | 45 |
| 310 | Highly enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclic enones with spirocyclic phosphoramidite ligands. Tetrahedron Letters, 2005, 46, 6087-6090. | 1.4 | 40 |
| 311 | A correlation study of bisphosphine ligand bite angles with enantioselectivity in Pd-catalyzed asymmetric transformations. Tetrahedron Letters, 2005, 46, 8213-8216. | 1.4 | 46 |
| 312 | A new class of readily available and conformationally rigid phosphino-oxazoline ligands for asymmetric catalysis. Tetrahedron, 2005, 61, 6460-6471. | 1.9 | 52 |
| 313 | Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation. European Journal of Organic Chemistry, 2005, 2005, 646-649. | 2.4 | 166 |
| 314 | Practical Synthesis of Enantiopure ?-Amino Alcohols by Rhodium-Catalyzed Asymmetric Hydrogenation of ?-Secondary-Amino Ketones. Angewandte Chemie - International Edition, 2005, 44, 1687-1689. | 13.8 | 121 |
| 315 | Enantioselective Hydrogenation of Allylphthalimides: An Efficient Method for the Synthesis of \|̂2-Methyl Chiral Amines. Angewandte Chemie - International Edition, 2005, 44, 4933-4935. | 13.8 | 47 |

316 Rhodium-Catalyzed Asymmetric Hydrogenation., 2005, , 1-31.
Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation.. ChemInform, 2005, 36, no.
$0.0 \quad 0$
Practical Synthesis of Enantiopure $\hat{I}_{ \pm}-A m i n o$ Alcohols by Rhodium-Catalyzed Asymmetric Hydrogenation of $\hat{1} 2$-Secondary-Amino Ketones.. ChemInform, 2005, 36, no.
0.0
0

Enantioselective Syntheses of 3,4,5-Trisubstituted $\hat{\imath}$-Lactones: Formal Synthesis of
0.0

0
319 (-)-Blastmycinolactol.. Chemlnform, 2005, 36, no.

A New Class of Readily Available and Conformationally Rigid Phosphino-Oxazoline Ligands for
0.0

320 Asymmetric Catalysis.. ChemInform, 2005, 36, no.
$0.0 \quad 0$

Enantioselective Hydrogenation of Allylphthalimides: An Efficient Method for the Synthesis of
̂²-Methyl Chiral Amines.. ChemInform, 2005, 36, no.
$0.0 \quad 0$

Ferrocenyl bis-phosphine ligands bearing sulfinyl, sulfonyl or sulfenyl groups: applications in
322 asymmetric hydrogenation and allylic alkylation reactions. Tetrahedron: Asymmetry, 2005, 16,
1.8

30
3676-3681.

Efficient Rhodium-Catalyzed Asymmetric Hydrogenation for the Synthesis of a New Class ofN-Aryl
̂̂2-Amino Acid Derivatives. Organic Letters, 2005, 7, 5343-5345.
325 Cyclisation Reactions., 2005, , 181-200.

Enantiomerically Pure Amino Alcohols. Journal of the American Chemical Society, 2004, 126, 1626-1627.

329 \begin{tabular}{l}
Highly Enantioselective Asymmetric Hydrogenation of $\hat{I} \pm$-Phthalimide Ketone: An Efficient Entry to

Enantiomerically Pure Amino Alcohols.. Chemlnform, 2004, 35, no.

\quad

Development of DIOP Derivatives as Efficient Ligands for Asymmetric Hydrogenation: Factors

Controlling the Reactivities and Enantioselectivities.. Chemlnform, 2004, 35, no.
\end{tabular}$\quad 0.0$

332 Novel phosphine-phosphite and phosphine-phosphinite ligands for highly enantioselective asymmetric hydrogenation. Tetrahedron: Asymmetry, 2004, 15, 2173-2175.
1.8

333 \begin{tabular}{l}
Development of DIOP derivatives as efficient ligands for asymmetric hydrogenation: factors

controlling the reactivities and enantioselectivities. Tetrahedron: Asymmetry, 2004, 15, 2181-2184.

334

Synthesis of ortho-phenyl substituted MeO-BIPHEP ligand and its application in Rh-catalyzed
asymmetric hydrogenation. Tetrahedron: Asymmetry, 2004, 15, 2177-2180.

335 Synthesis of New Monodentate Spiro Phosphoramidite Ligand and Its Application in Rh-Catalyzed

Asymmetric Hydrogenation Reactions. Organic Letters, 2004, 6, 3565-3567.
\end{tabular}

Rhodium-Catalyzed Cycloisomerization of 1,6-Enynes with an Intramolecular Halogen Shift:Â Reaction Scope and Mechanism. Journal of the American Chemical Society, 2004, 126, 7601-7607.
4.6

100
Synthesis of a New Class of Conformationally Rigid Phosphino-oxazolines:â€\%o Highly Enantioselective
$337 \quad \begin{aligned} & \text { Synthesis of a New Class of Conformationally Rigid Phosphino-oxazolines:â€\%o Highly Enantioselective } \\ & \text { Ligands for Ir-Catalyzed Asymmetric Hydrogenation. Organic Letters, 2004, 6, 513-516. }\end{aligned}$

New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chemical Reviews, 2003, 103,
3029-3070.
339 Title is missing!. Angewandte Chemie, 2003, 115, 3633-3635. 2.0 48
$340 \quad \begin{aligned} & \text { Phospholaneâ€"Oxaz } \\ & 2003,115,973-976 .\end{aligned}$

Highly Efficient Synthesis of Chiral $\hat{1}^{2}$-Amino Acid Derivatives via Asymmetric Hydrogenation..
Chemlnform, 2003, 34, no.

Chiral C2-Symmetric Ligands with 1,4-Dioxane Backbone Derived from Tartrates: Syntheses and Applications in Asymmetric Hydrogenation.. ChemInform, 2003, 34, no.

0

Highly Enantioselective Hydrogenation of Enol Acetates Catalyzed by Ruâ€"TunaPhos Complexes..
351 A Bisphosphepine Ligand with Stereogenic Phosphorus Centers for the Practical Synthesis of
$351 \hat{\imath}^{2}$-Aryl- $\hat{\imath}^{2}$-amino Acids by Asymmetric Hydrogenation.. ChemInform, 2003, 34, no.

Rh-Catalyzed Kinetic Resolution of Enynes and Highly Enantioselective Formation of
356 4-Alkenyl-2,3-disubstituted Tetrahydrofurans. Journal of the American Chemical Society, 2003, 125,

361	Palladium-Catalyzed Homocoupling Reactions between Two Csp3â^" Csp3 Centers. Organic Letters, 2002, 4, 2285-2288.	4.6	54
362	ChiralC2-Symmetric Ligands with 1,4-Dioxane Backbone Derived from Tartrates:Â Syntheses and Applications in Asymmetric Hydrogenation. Journal of Organic Chemistry, 2002, 67, 7618-7623.	3.2	71
363	Anortho-Substituted BIPHEP Ligand and Its Applications in Rh-Catalyzed Hydrogenation of Cyclic Enamides. Organic Letters, 2002, 4, 1695-1698.	4.6	89
364	Highly Effective Chiral Ortho-Substituted BINAPO Ligands (o-BINAPO):Â Applications in Ru-Catalyzed Asymmetric Hydrogenations of $\hat{2}$-Aryl-Substituted $\hat{\imath}$-(Acylamino) acrylates and $\hat{\imath}$--Keto Esters. Journal of the American Chemical Society, 2002, 124, 4952-4953.	13.7	203
365	A Novel Chiral Ferrocenyl Phosphine Ligand from Sugar:â€\%» Applications in Rh-Catalyzed Asymmetric Hydrogenation Reactions. Organic Letters, 2002, 4, 4471-4474.	4.6	56
366	Highly Enantioselective Syntheses of Functionalized $\hat{I} \pm$-Methylene- $\hat{3}$-butyrolactones via Rh(I)-catalyzed Intramolecular Alder Ene Reaction:ÂApplication to Formal Synthesis of (+)-Pilocarpine. Journal of the American Chemical Society, 2002, 124, 8198-8199.	13.7	139
367	Highly Efficient Synthesis of Chiral Î²-Amino Acid Derivatives via Asymmetric Hydrogenation. Organic $^{\text {2 }}$ Letters, 2002, 4, 4159-4161.	4.6	130
368	Transmetalation of Palladium Enolate and Its Application in Palladium-Catalyzed Homocoupling of Alkynes:Â A Room-Temperature, Highly Efficient Route To Make Diynes. Journal of Organic Chemistry, 2002, 67, 1969-1971.	3.2	186
369	Synthesis of novel BINOL-derived chiral bisphosphorus ligands and their application in catalytic asymmetric hydrogenation. Chemical Communications, 2002, , 1124-1125.	4.1	33

381	An efficient Rh-catalyst system for the intramolecular [4+2] and [5+2] cycloaddition reactions. Tetrahedron Letters, 2000, 41, 8041-8044.	1.4	82
382	Highly efficient kinetic resolution of 2-cyclohexenyl acetate in Pd-catalyzed allylic alkylation. Tetrahedron Letters, 2000, 41, 5435-5439.	1.4	87
383	Synthesis of Chiral Bisphosphines with Tunable Bite Angles and Their Applications in Asymmetric Hydrogenation of $\hat{2}$-Ketoesters. Journal of Organic Chemistry, 2000, 65, 6223-6226.	3.2	246
384	Synthesis of Chiral Hydroxyl Phospholanes fromd-mannitol and Their Use in Asymmetric Catalytic Reactions. Journal of Organic Chemistry, 2000, 65, 3489-3496.	3.2	150
385	Rh-Catalyzed Enyne Cycloisomerization. Journal of the American Chemical Society, 2000, 122, 6490-6491.	13.7	144

Synthesis of 3, 4-O-Isopropylidene- $(3 S, 4 \mathrm{~S})$-dihydroxy-(2R,5R)-bis(diphenylphosphino)hexane and Its
386 Application in Rh-Catalyzed Highly Enantioselective Hydrogenation of Enamides. Journal of Organic Chemistry, 2000, 65, 5871-5874.
387 The first tridentate ligand for catalytic enantioselective aza-Claisen rearrangement of allylic
389 Highly Enantioselective Hydrogenation of Cyclic Enol Acetates Catalyzed by a Rh-PennPhos Complex. Angewandte Chemie - International Edition, 1999, 38, 516-518.
13.8Development of New Chiral P,N Ligands and Their Application in the Cu-Catalyzed Enantioselective390 Conjugate Addition of Diethylzinc to Enones. Angewandte Chemie - International Edition, 1999, 38,13.8
397
398

Syntheses of novel chiral 2,5-dialkyl-7-azabicyclo[2.2.1]heptanes and
2,5-dialkyl-7-thiobicyclo[2.2.1]heptanes. Tetrahedron Letters, 1998, 39, 5331-5334.
1.46

Highly Enantioselective Hydrogenation of Simple Ketones Catalyzed by a Rh-PennPhos Complex.
399 Synthesis and structure of (Mo3S7[s2p (OC2H5)2]3) MO3S4[S2P(OC2H5)2]4(SCN) and interaction
403 Nolinear optical liquid cored fiber array and liquid crystal film fo ps-cw frequency agile laser opticallimiting application. Optics Express, 1998, 2, 471.
$3.4 \quad 33$

Practical Syntheses of $\hat{1}^{2}$-Amino Alcohols via Asymmetric Catalytic Hydrogenation. Journal of Organic
3.2

82

405 A New Chiral Bis(oxazolinylmethyl)amine Ligand for Ru-Catalyzed Asymmetric Transfer Hydrogenation of Ketones. Journal of the American Chemical Society, 1998, 120, 3817-3818.

Asymmetric Rh-Catalyzed Hydrogenation of Enamides with a Chiral 1,4-Bisphosphine Bearing
Diphenylphosphino Groups. Journal of Organic Chemistry, 1998, 63, 9590-9593.
Synthesis and X-ray Crystal Structures of Palladium(II) and Platinum(II) Complexes of the PCP-Type
407 Chiral Tridentate Ligand (1R,1â€ R^{2})-1,3-Bis [1-(diphenylphosphino)ethyl] benzene. Use in the Asymmetric
2.3

202
Aldol Reaction of Methyl Isocyanoacetate and Aldehydes. Organometallics, 1998, 17, 4374-4379.

Highly Enantioselective Hydrogenation of Simple Ketones Catalyzed by a Rhâe"PennPhos Complex.
Angewandte Chemie - International Edition, 1998, 37, 1100-1103.
13.8

2

Highly Enantioselective Rh-Catalyzed Hydrogenations with a New Chiral 1,4-Bisphosphine Containing a
13.7

124
Cyclic Backbone. Journal of the American Chemical Society, 1997, 119, 1799-1800.

Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by a Titanate Complex with a Chiral
3.2

63
Tetradentate Ligand. Journal of Organic Chemistry, 1997, 62, 2665-2668.
Syntheses of Novel Chiral Monophosphines, 2,5-Dialkyl-7-phenyl-7-phosphabicyclo- [2.2.1]heptanes, and
411 Their Application in Highly Enantioselective Pd-Catalyzed Allylic Alkylations. Journal of Organic
3.2

53
Chemistry, 1997, 62, 4521-4523.
Aza-Crown-Capped Porphyrin Models of Myoglobin:â $€ \%$ Studies of the Steric Interactions of Gas Binding.
Journal of the American Chemical Society, 1997, 119, 3481-3489.

Society, 1997, 119, 3836-3837.
415 Enantioselective addition of diethylzinc to benzaldehyde catalyzed by chiral titanate complexes with

Asymmetric hydrosilylation of ketones catalyzed by ruthenium complexes with chiral tridentate
416 ligands. Journal of Organometallic Chemistry, 1997, 547, 97-101.
1.8

77

Highly effective NPN-type tridentate ligands for asymmetric transfer hydrogenation of ketones.
1.4 Tetrahedron Letters, 1997, 38, 215-218.

106
Highly effective NPN-type tridentate ligands for asymmetric transfer hydrogenation of ketones.
Tetrahedron Letters, 1997, 38, 215-218.

Asymmetric allylic alkylation catalyzed by palladium complexes with a new chiral bisphosphine ligand.
1.4

22
418 Tetrahedron Letters, 1997, 38, 375-378.
Synthesis of chiral phosphine ligands with aromatic backbones and their applications in asymmetric
catalysis. Tetrahedron Letters, 1997, 38, 1725-1728.
$1.4 \quad 67$

420 New chiral ligands for catalytic asymmetric transfer hydrogenation of ketones. Tetrahedron Letters, 1997, 38, 6565-6568.
1.4
Synthesis of (1,1â€2)-2,6-bis[1-(diphenylphosphino)ethyl]pyridine and its application in asymmetric
hydrogenation. Tetrahedron Letters, $1996,37,797-800$. Letters, 1996, 37, 4475-4478.
1.4

45

```
423 Enantioselective addition of diethylzinc to aldehydes catalyzed by chiral titanate complexes with a
``` tetradentate ligand. Tetrahedron Letters, 1995, 36, 4947-4950.

Dioxygen Binding in Iron and Cobalt Picnic Basket Porphyrins. Journal of the American Chemical Society, 1994, 116, 6245-6251.
425 Congruent multiple Michael addition for the synthesis of biomimetic heme analogs. Journal of the American Chemical Society, 1994, 116, 2681-2682.

\(13.7 \quad 73\)

Synthetic Analog for the Oxygen Binding Site in Cytochrome c Oxidase. Journal of the American Chemical Society, 1994, 116, 9783-9784.```

[^0]: Synthesis of Triphosphorous Bidentate Phosphineâ€"Phosphoramidite Ligands: Application in the Highly
 305 Enantioselective Hydrogenation ofortho-Substituted Aryl Enamides. Angewandte Chemie -

