
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3348161/publications.pdf Version: 2024-02-01

SHAODENC W/II

#	Article	IF	CITATIONS
1	Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Construction and Building Materials, 2009, 23, 1005-1010.	7.2	380
2	Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 2007, 42, 2580-2585.	6.9	312
3	Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders. Construction and Building Materials, 2014, 66, 286-298.	7.2	261
4	A review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews, 2015, 48, 624-634.	16.4	257
5	Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. Journal of Hazardous Materials, 2006, 138, 261-268.	12.4	249
6	Effect of organo-montmorillonite on aging properties of asphalt. Construction and Building Materials, 2009, 23, 2636-2640.	7.2	213
7	Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 2005, 43, 1358-1363.	10.3	190
8	Preparation and properties of montmorillonite modified asphalts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 447, 233-238.	5.6	185
9	Utilization of recycled brick powder as alternative filler in asphalt mixture. Construction and Building Materials, 2011, 25, 1532-1536.	7.2	181
10	Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and Building Materials, 2011, 25, 3909-3914.	7.2	167
11	High temperature properties of rejuvenating recovered binder with rejuvenator, waste cooking and cotton seed oils. Construction and Building Materials, 2014, 59, 10-16.	7.2	164
12	Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts. Journal of Hazardous Materials, 2010, 182, 507-517.	12.4	159
13	Effect of hydration and silicone resin on Basic Oxygen Furnace slag and its asphalt mixture. Journal of Cleaner Production, 2016, 112, 392-400.	9.3	157
14	Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers. Construction and Building Materials, 2008, 22, 2111-2115.	7.2	154
15	The temperature effects in aging index of asphalt during UV aging process. Construction and Building Materials, 2015, 93, 1125-1131.	7.2	151
16	Study on the graphite and carbon fiber modified asphalt concrete. Construction and Building Materials, 2011, 25, 1807-1811.	7.2	136
17	Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy Materials and Solar Cells, 2011, 95, 3241-3250.	6.2	131
18	Effect of montmorillonite on properties of styrene–butadiene–styrene copolymer modified bitumen. Polymer Engineering and Science, 2007, 47, 1289-1295.	3.1	123

#	Article	IF	CITATIONS
19	Effect of montmorillonite organic modification on ultraviolet aging properties of SBS modified bitumen. Construction and Building Materials, 2012, 27, 553-559.	7.2	118
20	Laboratory Study on Ultraviolet Radiation Aging of Bitumen. Journal of Materials in Civil Engineering, 2010, 22, 767-772.	2.9	114
21	Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures. International Journal of Fatigue, 2009, 31, 1598-1602.	5.7	108
22	Investigation of asphalt mixture containing demolition waste obtained from earthquake-damaged buildings. Construction and Building Materials, 2012, 29, 466-475.	7.2	108
23	Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen–stone adhesion and mortar. Materials & Design, 2009, 30, 170-179.	5.1	107
24	Laboratory investigation of the properties of asphalt modified with epoxy resin. Journal of Applied Polymer Science, 2009, 113, 3557-3563.	2.6	104
25	Effects of steel slag fillers on the rheological properties of asphalt mastic. Construction and Building Materials, 2017, 145, 383-391.	7.2	102
26	Environmental performance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate. Journal of Hazardous Materials, 2021, 405, 124441.	12.4	99
27	Research on Ultra Violet (UV) aging depth of asphalts. Construction and Building Materials, 2018, 160, 620-627.	7.2	97
28	Inhibiting effect of Layered Double Hydroxides on the emissions of volatile organic compounds from bituminous materials. Journal of Cleaner Production, 2015, 108, 987-991.	9.3	96
29	Self-healing performance of asphalt mixtures through heating fibers or aggregate. Construction and Building Materials, 2017, 150, 673-680.	7.2	93
30	Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating. Applied Thermal Engineering, 2018, 129, 871-883.	6.0	93
31	Performance characterization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag. Journal of Cleaner Production, 2022, 336, 130484.	9.3	92
32	Effects of fibers on the dynamic properties of asphalt mixtures. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 733-736.	1.0	91
33	Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation. Construction and Building Materials, 2012, 36, 467-474.	7.2	90
34	Laboratory investigation of compaction characteristics and performance of warm mix asphalt containing chemical additives. Construction and Building Materials, 2012, 37, 239-247.	7.2	88
35	Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs. Applied Thermal Engineering, 2011, 31, 1582-1587.	6.0	87
36	Investigation of the graphene oxide and asphalt interaction and its effect on asphalt pavement performance. Construction and Building Materials, 2018, 165, 572-584.	7.2	87

#	Article	IF	CITATIONS
37	Investigating self healing behaviour of pure bitumen using Dynamic Shear Rheometer. Fuel, 2011, 90, 2710-2720.	6.4	82
38	Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties. Materials, 2017, 10, 508.	2.9	82
39	Preparation of expanded graphite/polyethylene glycol composite phase change material for thermoregulation of asphalt binder. Construction and Building Materials, 2018, 169, 513-521.	7.2	82
40	Investigation of the optimal self-healing temperatures and healing time of asphalt binders. Construction and Building Materials, 2016, 113, 1029-1033.	7.2	80
41	Properties evaluation of asphalt-based composites with graphite and mine powders. Construction and Building Materials, 2008, 22, 121-126.	7.2	79
42	Rheological properties for aged bitumen containing ultraviolate light resistant materials. Construction and Building Materials, 2012, 33, 133-138.	7.2	79
43	Effect of LDHs on the aging resistance of crumb rubber modified asphalt. Construction and Building Materials, 2014, 67, 239-243.	7.2	77
44	Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder. Construction and Building Materials, 2014, 64, 60-66.	7.2	76
45	Influence of graphite on the thermal characteristics and anti-ageing properties of asphalt binder. Construction and Building Materials, 2014, 68, 220-226.	7.2	72
46	Effects of two biomass ashes on asphalt binder: Dynamic shear rheological characteristic analysis. Construction and Building Materials, 2014, 56, 7-15.	7.2	70
47	Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Construction and Building Materials, 2018, 180, 605-613.	7.2	70
48	Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture. Construction and Building Materials, 2015, 93, 911-918.	7.2	69
49	Experimental investigation of related properties of asphalt binders containing various flame retardants. Fuel, 2006, 85, 1298-1304.	6.4	67
50	Evaluation of Aging Resistance of Graphene Oxide Modified Asphalt. Applied Sciences (Switzerland), 2017, 7, 702.	2.5	66
51	Enhanced heat release and self-healing properties of steel slag filler based asphalt materials under microwave irradiation. Construction and Building Materials, 2018, 193, 32-41.	7.2	65
52	Influence of sodium and organo-montmorillonites on the properties of bitumen. Applied Clay Science, 2010, 49, 69-73.	5.2	64
53	The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt. Materials, 2017, 10, 48.	2.9	64
54	Flammability and rheological behavior of mixed flame retardant modified asphalt binders. Fuel, 2008, 87, 120-124.	6.4	61

#	Article	IF	CITATIONS
55	Conductive asphalt concrete: A review on structure design, performance, and practical applications. Journal of Intelligent Material Systems and Structures, 2015, 26, 755-769.	2.5	61
56	Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. Construction and Building Materials, 2017, 140, 239-247.	7.2	60
57	Biochar removes volatile organic compounds generated from asphalt. Science of the Total Environment, 2020, 745, 141096.	8.0	60
58	Performance characteristics of asphalt mixture with basic oxygen furnace slag. Construction and Building Materials, 2013, 38, 796-803.	7.2	59
59	Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Construction and Building Materials, 2020, 239, 117870.	7.2	59
60	Research on the conductive asphalt concrete's piezoresistivity effect and its mechanism. Construction and Building Materials, 2009, 23, 2752-2756.	7.2	58
61	Experimental investigation on related properties of asphalt mastic containing recycled red brick powder. Construction and Building Materials, 2011, 25, 2883-2887.	7.2	58
62	Investigation of sodium stearate organically modified LDHs effect on the anti aging properties of asphalt binder. Construction and Building Materials, 2018, 172, 509-518.	7.2	57
63	Induction heating of asphalt mastic for crack control. Construction and Building Materials, 2013, 41, 345-351.	7.2	56
64	Research on the Mechanical, Thermal, Induction Heating and Healing Properties of Steel Slag/Steel Fibers Composite Asphalt Mixture. Applied Sciences (Switzerland), 2017, 7, 1088.	2.5	56
65	Investigation into stress states in porous asphalt concrete on the basis of FE-modelling. Finite Elements in Analysis and Design, 2007, 43, 333-343.	3.2	55
66	A comparative study of the induction healing behaviors of hot and warm mix asphalt. Construction and Building Materials, 2017, 144, 663-670.	7.2	55
67	Investigation of the properties of asphalt and its mixtures containing flame retardant modifier. Construction and Building Materials, 2009, 23, 2277-2282.	7.2	54
68	Synthesis and characterization of organic intercalated layered double hydroxides and their application in bitumen modification. Materials Chemistry and Physics, 2015, 152, 54-61.	4.0	52
69	Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renewable and Sustainable Energy Reviews, 2021, 141, 110823.	16.4	52
70	Influence of surface treated fly ash with coupling agent on asphalt mixture moisture damage. Construction and Building Materials, 2012, 30, 340-346.	7.2	51
71	UV and Thermal Aging of Pure Bitumen-comparison Between Laboratory Simulation and Natural Exposure Aging. Road Materials and Pavement Design, 2008, 9, 103-113.	4.0	50
72	Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Materials and Pavement Design, 2013, 14, 679-688.	4.0	50

#	Article	IF	CITATIONS
73	Evaluation of mechanical properties and aging index of 10-year field aged asphalt materials. Construction and Building Materials, 2017, 155, 1158-1167.	7.2	50
74	Test evaluation of rutting performance indicators of asphalt mixtures. Construction and Building Materials, 2017, 155, 1215-1223.	7.2	50
75	Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Construction and Building Materials, 2020, 235, 117437.	7.2	50
76	Analysis of Characteristics of Electrically Conductive Asphalt Concrete Prepared by Multiplex Conductive Materials. Journal of Materials in Civil Engineering, 2013, 25, 871-879.	2.9	49
77	The Mechanical Resistance of Asphalt Mixture with Steel Slag to Deformation and Skid Degradation Based on Laboratory Accelerated Heavy Loading Test. Materials, 2022, 15, 911.	2.9	48
78	Bitumen–stone adhesive zone damage model for the meso-mechanical mixture design of ravelling resistant porous asphalt concrete. International Journal of Fatigue, 2011, 33, 1490-1503.	5.7	47
79	Effect of fiber types on relevant properties of porous asphalt. Transactions of Nonferrous Metals Society of China, 2006, 16, s791-s795.	4.2	46
80	Laboratory investigation of the properties of asphalt and its mixtures modified with flame retardant. Construction and Building Materials, 2008, 22, 1037-1042.	7.2	44
81	Investigation of temperature characteristics of recycled hot mix asphalt mixtures. Resources, Conservation and Recycling, 2007, 51, 610-620.	10.8	43
82	Rheological evaluation of bitumen containing different ultraviolet absorbers. Construction and Building Materials, 2012, 29, 591-596.	7.2	43
83	Experimental investigation of bituminous plug expansion joint materials containing high content of crumb rubber powder and granules. Materials & Design, 2012, 37, 137-143.	5.1	42
84	Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Applied Sciences (Switzerland), 2017, 7, 397.	2.5	42
85	Investigation of the flow and self-healing properties of UV aged asphalt binders. Construction and Building Materials, 2018, 174, 401-409.	7.2	42
86	Study on the effective composition of steel slag for asphalt mixture induction heating purpose. Construction and Building Materials, 2018, 178, 542-550.	7.2	42
87	Study on the gradient heating and healing behaviors of asphalt concrete induced by induction heating. Construction and Building Materials, 2019, 208, 638-645.	7.2	42
88	Self-monitoring electrically conductive asphalt-based composite containing carbon fillers. Transactions of Nonferrous Metals Society of China, 2006, 16, s512-s516.	4.2	41
89	Investigation of self healing behaviour of asphalt mixes using beam on elastic foundation setup. Materials and Structures/Materiaux Et Constructions, 2012, 45, 777-791.	3.1	41
90	Effects of aging on the properties of modified asphalt binder with flame retardants. Construction and Building Materials, 2010, 24, 2554-2558.	7.2	40

#	Article	IF	CITATIONS
91	The healing properties of asphalt mixtures suffered moisture damage. Construction and Building Materials, 2016, 127, 418-424.	7.2	39
92	Characterization of Organic Surfactant on Montmorillonite Nanoclay to Be Used in Bitumen. Journal of Materials in Civil Engineering, 2010, 22, 794-799.	2.9	38
93	Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials. Materials, 2014, 7, 6130-6143.	2.9	38
94	Effect of Ultraviolet Aging on Rheology and Chemistry of LDH-Modified Bitumen. Materials, 2015, 8, 5238-5249.	2.9	38
95	Multi-scale performance evaluation and correlation analysis of blended asphalt and recycled asphalt mixtures incorporating high RAP content. Journal of Cleaner Production, 2021, 317, 128278.	9.3	38
96	Influence of organo-montmorillonites on fatigue properties of bitumen and mortar. International Journal of Fatigue, 2011, 33, 1574-1582.	5.7	37
97	Influence of ageing on rheology of SBR/sulfurâ€modified asphalts. Polymer Engineering and Science, 2012, 52, 71-79.	3.1	37
98	Synthesis and characterization of compartmented Ca-alginate/silica self-healing fibers containing bituminous rejuvenator. Construction and Building Materials, 2018, 190, 623-631.	7.2	37
99	Effect of Carbon Black Nanoparticles from the Pyrolysis of Discarded Tires on the Performance of Asphalt and its Mixtures. Applied Sciences (Switzerland), 2018, 8, 624.	2.5	36
100	A criterion of asphalt pavement rutting based on the thermal-visco-elastic-plastic model. International Journal of Pavement Engineering, 2022, 23, 1134-1144.	4.4	36
101	Investigation on physical and chemical parameters to predict long-term aging of asphalt binder. Construction and Building Materials, 2016, 122, 753-759.	7.2	35
102	Multi-stress loading effect on rutting performance of asphalt mixtures based on wheel tracking testing. Construction and Building Materials, 2017, 148, 1-9.	7.2	35
103	Self-monitoring application of asphalt concrete containing graphite and carbon fibers. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 268-271.	1.0	34
104	Investigation of the effect of Mg-Al-LDH on pavement performance and aging resistance of styrene-butadiene-styrene modified asphalt. Construction and Building Materials, 2018, 172, 584-596.	7.2	34
105	Piezoresistivity of Graphite Modified Asphalt-Based Composites. Key Engineering Materials, 2003, 249, 391-396.	0.4	33
106	Surface modification of silica and its compounding with polydimethylsiloxane matrix: interaction of modified silica filler with PDMS. Iranian Polymer Journal (English Edition), 2012, 21, 583-589.	2.4	33
107	Possibility of using epoxy modified bitumen to replace tar-containing binder for pavement antiskid surfaces. Construction and Building Materials, 2013, 48, 59-66.	7.2	33
108	Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete. Materials, 2017, 10, 218.	2.9	33

#	Article	IF	CITATIONS
109	Moisture-induced damage resistance of asphalt mixture entirely composed of gneiss and steel slag. Construction and Building Materials, 2018, 177, 332-341.	7.2	33
110	Study on the deteriorations of bituminous binder resulted from volatile organic compounds emissions. Construction and Building Materials, 2014, 68, 644-649.	7.2	32
111	Investigation on the pavement performance of asphalt mixture based on predicted dynamic modulus. Construction and Building Materials, 2016, 106, 11-17.	7.2	32
112	Implementation of modified pull-off test by UTM to investigate bonding characteristics of bitumen and basic oxygen furnace slag (BOF). Construction and Building Materials, 2014, 57, 61-68.	7.2	31
113	Hazardous characteristics and variation in internal structure by hydrodynamic damage of BOF slag-based thin asphalt overlay. Journal of Hazardous Materials, 2021, 412, 125344.	12.4	31
114	Microwave Heating of Steel Slag Asphalt Mixture. Key Engineering Materials, 0, 599, 193-197.	0.4	30
115	Effect of carbon fillers on electrical and road properties of conductive asphalt materials. Construction and Building Materials, 2014, 68, 301-306.	7.2	30
116	Microfluidic Synthesis of Ca-Alginate Microcapsules for Self-Healing of Bituminous Binder. Materials, 2018, 11, 630.	2.9	30
117	Evaluation on Self-healing Mechanism and Hydrophobic Performance of Asphalt Modified by Siloxane and Polyurethane. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 630-637.	1.0	30
118	Life Cycle Assessment of Biochar Modified Bioasphalt Derived from Biomass. ACS Sustainable Chemistry and Engineering, 2020, 8, 14568-14575.	6.7	30
119	Laboratory investigation of rejuvenator seal materials on performances of asphalt mixtures. Construction and Building Materials, 2012, 37, 41-45.	7.2	29
120	Recycling of Flue Gas Desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation. Construction and Building Materials, 2014, 73, 137-144.	7.2	29
121	Effectiveness of rejuvenator seal materials on performance of asphalt pavement. Construction and Building Materials, 2014, 55, 63-68.	7.2	29
122	Numerical simulation on the thermal response of heat-conducting asphalt pavements. Physica Scripta, 2010, T139, 014041.	2.5	28
123	Effect of chemical component characteristics of waste cooking oil on physicochemical properties of aging asphalt. Construction and Building Materials, 2022, 344, 128236.	7.2	27
124	Characteristics of Ceramic Fiber Modified Asphalt Mortar. Materials, 2016, 9, 788.	2.9	26
125	Feasibility study of BOF slag containing honeycomb particles in asphalt mixture. Construction and Building Materials, 2016, 124, 550-557.	7.2	26
126	Evaluation the deleterious potential and heating characteristics of basic oxygen furnace slag based on laboratory and in-place investigation during large-scale reutilization. Journal of Cleaner Production, 2016, 133, 78-87.	9.3	26

#	Article	IF	CITATIONS
127	Transitions of component, physical, rheological and self-healing properties of petroleum bitumen from the loose bituminous mixture after UV irradiation. Fuel, 2020, 262, 116507.	6.4	26
128	Characteristics of calcareous sand filler and its influence on physical and rheological properties of asphalt mastic. Construction and Building Materials, 2021, 301, 124112.	7.2	26
129	Self-healing properties of asphalt concrete containing responsive calcium alginate/nano-Fe3O4 composite capsules via microwave irradiation. Construction and Building Materials, 2021, 310, 125258.	7.2	26
130	Review of ultraviolet ageing mechanisms and anti-ageing methods for asphalt binders. , 2022, 2, 137-155.		26
131	Curing behavior of epoxy asphalt. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 462-465.	1.0	25
132	VOCs characteristics and their relation with rheological properties of base and modified bitumens at different temperatures. Construction and Building Materials, 2018, 160, 794-801.	7.2	25
133	Study of Toxicity Assessment of Heavy Metals from Steel Slag and Its Asphalt Mixture. Materials, 2020, 13, 2768.	2.9	25
134	Evaluation of VOCs inhibited effects and rheological properties of asphalt with high-content waste rubber powder. Construction and Building Materials, 2021, 300, 124320.	7.2	25
135	Effect of Rejuvenator Sealer Materials on the Properties of Aged Asphalt Binder. Journal of Materials in Civil Engineering, 2013, 25, 829-835.	2.9	24
136	Effect mechanism of mixing on improving conductivity of asphalt solar collector. International Journal of Heat and Mass Transfer, 2014, 75, 650-655.	4.8	24
137	Utilization of silicone maintenance materials to improve the moisture sensitivity of asphalt mixtures. Construction and Building Materials, 2012, 33, 1-6.	7.2	23
138	Characterization of fatigue performance of asphalt mixture using a new fatigue analysis approach. Construction and Building Materials, 2013, 45, 45-52.	7.2	23
139	Investigation into crack healing of asphalt mixtures using healing agents. Construction and Building Materials, 2018, 161, 45-52.	7.2	23
140	Synthesis and Effect of Encapsulating Rejuvenator Fiber on the Performance of Asphalt Mixture. Materials, 2019, 12, 1266.	2.9	23
141	Field evaluation of LDHs effect on the aging resistance of asphalt concrete after four years of road service. Construction and Building Materials, 2019, 208, 192-203.	7.2	23
142	Feasibility assessment of CeO2 nanoparticles as aging-resistant agent of asphalt. Construction and Building Materials, 2022, 330, 127245.	7.2	23
143	The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis. Materials, 2017, 10, 574.	2.9	22
144	Effect of moisture conditioning on mechanical and healing properties of inductive asphalt concrete. Construction and Building Materials, 2020, 241, 118139.	7.2	22

#	Article	IF	CITATIONS
145	Aging Mechanism and Rejuvenating Possibility of SBS Copolymers in Asphalt Binders. Polymers, 2020, 12, 92.	4.5	22
146	Rheology and volatile organic compounds characteristics of warm-mix flame retardant asphalt. Construction and Building Materials, 2021, 298, 123691.	7.2	22
147	Damage accumulation model for monotonic and dynamic shear fracture of asphalt-stone adhesion. Theoretical and Applied Fracture Mechanics, 2006, 46, 140-147.	4.7	21
148	Synthesis and properties of microwave and crack responsive fibers encapsulating rejuvenator for bitumen self-healing. Materials Research Express, 2019, 6, 085306.	1.6	21
149	Study on Recycling of Steel Slags Used as Coarse and Fine Aggregates in Induction Healing Asphalt Concretes. Materials, 2020, 13, 889.	2.9	21
150	Environmental and feasible analysis of recycling steel slag as aggregate treated by silicone resin. Construction and Building Materials, 2021, 299, 123914.	7.2	20
151	Damage and corrosion of conductive asphalt concrete subjected to freeze–thaw cycles and salt. Materials Research Innovations, 2013, 17, 240-245.	2.3	19
152	Mortar fatigue model for meso-mechanistic mixture design of ravelling resistant porous asphalt concrete. Materials and Structures/Materiaux Et Constructions, 2014, 47, 947-961.	3.1	19
153	Self-monitoring application of conductive asphalt concrete under indirect tensile deformation. Case Studies in Construction Materials, 2015, 3, 70-77.	1.7	19
154	Improving blood-compatibility via surface heparin-immobilization based on a liquid crystalline matrix. Materials Science and Engineering C, 2016, 58, 133-141.	7.3	19
155	Silicone Resin Polymer Used in Preventive Maintenance of Asphalt Mixture Based on Fog Seal. Polymers, 2019, 11, 1814.	4.5	19
156	Diffusion Mechanism of Rejuvenator and Its Effects on the Physical and Rheological Performance of Aged Asphalt Binder. Materials, 2019, 12, 4130.	2.9	19
157	The Properties of Different Healing Agents Considering the Micro-Self-Healing Process of Asphalt with Encapsulations. Materials, 2021, 14, 16.	2.9	19
158	Optimization of blended mortars using steel slag sand. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 741-744.	1.0	18
159	Melting intercalation method to prepare lauric acid/organophilic montmorillonite shape-stabilized phase change material. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 674-677.	1.0	18
160	Morphological Discrepancy of Various Basic Oxygen Furnace Steel Slags and Road Performance of Corresponding Asphalt Mixtures. Materials, 2019, 12, 2322.	2.9	18
161	Microwave absorption and anti-aging properties of modified bitumen contained SiC attached layered double hydroxides. Construction and Building Materials, 2019, 227, 116714.	7.2	18
162	Investigation of the Effect of Induction Heating on Asphalt Binder Aging in Steel Fibers Modified Asphalt Concrete. Materials, 2019, 12, 1067.	2.9	17

#	Article	IF	CITATIONS
163	Relationship between retrographical and physical properties of aggregates. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 678-681.	1.0	16
164	Self-healing characteristics of bituminous mastics using a modified direct tension test. Journal of Intelligent Material Systems and Structures, 2014, 25, 58-66.	2.5	16
165	Comparative evaluation of designing asphalt treated base mixture with composite aggregate types. Construction and Building Materials, 2017, 156, 819-827.	7.2	16
166	Rheological properties of asphalt modified by supramolecular UV resistant material-LDHs. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 805-809.	1.0	15
167	Review on asphalt plug joints: Performance, materials, testing and installation. Construction and Building Materials, 2013, 45, 106-114.	7.2	15
168	Effect of inorganic ultraviolet resistance nanomaterials on the physical and rheological properties of bitumen. Construction and Building Materials, 2017, 152, 832-838.	7.2	15
169	Characterization of three-stage rutting development of asphalt mixtures. Construction and Building Materials, 2017, 154, 340-348.	7.2	15
170	Laboratory and field evaluation of sodium stearate organically modified LDHs effect on the anti aging performance of asphalt mixtures. Construction and Building Materials, 2018, 189, 366-374.	7.2	15
171	Investigation of the physic-chemical properties and toxic potential of Basic Oxygen Furnace Slag (BOF) in asphalt pavement constructed after 15Âyears. Construction and Building Materials, 2020, 238, 117630.	7.2	15
172	Characteristics of Different Types of Basic Oxygen Furnace Slag Filler and its Influence on Properties of Asphalt Mastic. Materials, 2019, 12, 4034.	2.9	14
173	Investigating the Self Healing Capability of Bituminous Binders. Road Materials and Pavement Design, 2009, 10, 81-94.	4.0	14
174	Research on fracture characteristic of gneiss prepared asphalt mixture with direct tensile test. Construction and Building Materials, 2012, 28, 476-481.	7.2	13
175	Assessment of bonding behaviours between ultrathin surface layer and asphalt mixture layer using modified pull test. Journal of Adhesion Science and Technology, 2015, 29, 1508-1521.	2.6	13
176	Material characterization and performance evaluation of asphalt mixture Incorporating basic oxygen furnace slag (BOF) sludge. Construction and Building Materials, 2017, 147, 362-370.	7.2	13
177	Evaluation of moisture and temperature effect on crack healing of asphalt mortar and mixtures using healing agents. Construction and Building Materials, 2018, 177, 388-394.	7.2	13
178	Investigation into fundamental properties of bituminous plug expansion joint filling mixtures containing rubber granules. Construction and Building Materials, 2013, 47, 984-989.	7.2	12
179	Promoting the dispersion of LDHs powder in bitumen with pre-dispersion and microwave heating. Construction and Building Materials, 2015, 93, 416-426.	7.2	12
180	Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate. Materials Science and Engineering C, 2017, 71, 973-981.	7.3	12

#	Article	IF	CITATIONS
181	Assessment on Physical and Rheological Properties of Aged SBS Modified Bitumen Containing Rejuvenating Systems of Isocyanate and Epoxy Substances. Materials, 2019, 12, 618.	2.9	12
182	Characterization of Steel Slag Filler and Its Effect on Aging Resistance of Asphalt Mastic with Various Aging Methods. Materials, 2021, 14, 869.	2.9	12
183	Self healing capacity of asphalt binders. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 794-796.	1.0	11
184	Comparison of Uniaxial and Four-Point Bending Fatigue Tests for Asphalt Mixtures. Transportation Research Record, 2013, 2373, 44-53.	1.9	11
185	Crack resistance of asphalt mixture with steel slag powder. Emerging Materials Research, 2017, 6, 214-218.	0.7	11
186	Significance of initial rutting in prediction of rutting development and characterization of asphalt mixtures. Construction and Building Materials, 2017, 153, 157-164.	7.2	11
187	Revelation and characterization of selective absorption behavior of bitumen to basic oxygen furnace slag. Construction and Building Materials, 2020, 253, 119210.	7.2	11
188	Reducing the compaction segregation of hot mix asphalt. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 132-135.	1.0	10
189	Fatigue Properties of Layered Double Hydroxides Modified Asphalt and Its Mixture. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.8	10
190	Using interface shear characteristics to evaluate the residual performance of asphalt pavements. Journal of Adhesion Science and Technology, 2018, 32, 2070-2082.	2.6	10
191	Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index. Materials, 2018, 11, 917.	2.9	10
192	Assessment of carbon dioxide emissions during production, construction and use stages of asphalt pavements. Transportation Research Interdisciplinary Perspectives, 2021, 11, 100436.	2.7	10
193	High-temperature hazards and prevention measurements for asphalt pavement. , 2010, , .		9
194	Development of Autonomous Setup for Evaluating Self-Healing Capability of Asphalt Mixtures. Transportation Research Record, 2012, 2296, 15-23.	1.9	9
195	Carbon Nanomaterials for Enhancing the Thermal, Physical and Rheological Properties of Asphalt Binders. Materials, 2021, 14, 2585.	2.9	9
196	Assessment on Steel Slag–Based SMA-5 and AC-5 Asphalt Mixtures for Maintenance and Induction Heating. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	9
197	The Life Cycle Energy Consumption and Emissions of Asphalt Pavement Incorporating Basic Oxygen Furnace Slag by Comparative Study. Sustainability, 2021, 13, 4540.	3.2	8
198	Production and application of steel slag coarse aggregate in asphalt mixture. Emerging Materials Research, 2017, 6, 219-222.	0.7	7

#	Article	IF	CITATIONS
199	Effect of layered double hydroxides addition on the ageing and self-healing properties of asphalt binder. Materials Research Express, 2019, 6, 075704.	1.6	7
200	Effect of Specimen Size on Fatigue Behavior of Asphalt Mixture in Laboratory Fatigue Tests. RILEM Bookseries, 2012, , 827-836.	0.4	7
201	Research on gradient characteristics and its prediction method of induction heating asphalt concrete. Construction and Building Materials, 2021, 309, 124920.	7.2	7
202	Fatigue performance of bridge deck pavement materials. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 318-320.	1.0	6
203	A Novel Potential Flame-retarded Bitumen. Road Materials and Pavement Design, 2009, 10, 115-128.	4.0	6
204	Preparation and fatigue property of nanoclay modified asphalt binder. , 2010, , .		6
205	Rheological properties of conductive asphalt binders containing graphite and carbon fiber before and after ageing. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 557-559.	1.0	6
206	Function Investigation of Stone Mastic Asphalt (SMA) Mixture Partly Containing Basic Oxygen Furnace (BOF) Slag. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 68-72.	1.6	6
207	Bonding behavior and its affecting factors between basic oxygen furnace slag and asphalt. Construction and Building Materials, 2020, 253, 119153.	7.2	6
208	A Novel Potential Flame-retarded Bitumen Nanoclay Modified Bitumen. Road Materials and Pavement Design, 2009, 10, 115-128.	4.0	6
209	Physical Properties and Storage Stability of Buton Rock Asphalt Modified Asphalt. Materials, 2022, 15, 3592.	2.9	6
210	Ice melting properties of steel slag asphalt concrete with microwave heating. IOP Conference Series: Materials Science and Engineering, 2017, 182, 012041.	0.6	5
211	Experimental assessment of the long-time crack healing in asphalt mixtures using healing agents. Construction and Building Materials, 2018, 191, 411-422.	7.2	5
212	Thermal Exchange and Skid Resistance of Chip Seal with Various Aggregate Types and Morphologies. Applied Sciences (Switzerland), 2020, 10, 8192.	2.5	5
213	Cracking and Healing Modelling of Asphalt Mixtures. RILEM Bookseries, 2012, , 1135-1144.	0.4	5
214	A novel method for evaluating fatigue properties of bonding layers used in bridge deck pavement. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 330-332.	1.0	4
215	Estimation of the fatigue endurance limit of HMAC for perpetual pavements. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 645-649.	1.0	4
216	Influence of Warm Mix Asphalt Additive on Temperature Susceptibility of Asphalt Binders. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	4

#	Article	IF	CITATIONS
217	Low Temperature Properties of UV Aged Asphalts Containing Layered Double Hydroxides Modifier. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 73-76.	1.6	4
218	Study of Antiultraviolet Asphalt Modifiers and Their Antiageing Effects. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.8	4
219	Research on Low Temperature Rheological Behavior of Aging Resistant Bitumen and Mixture. , 2012, , .		3
220	Preparation of novel PP-g-BMA sorbent by two-step irradiation method for elimination of homopolymerization in grafting process. Journal of Polymer Research, 2013, 20, 1.	2.4	3
221	Function Evaluation of Asphalt Mixture with Industrially Produced BOF Slag Aggregate. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 7-10.	1.6	3
222	Systematic comparison of two-stage analytical rutting models of asphalt mixtures. Construction and Building Materials, 2017, 153, 716-727.	7.2	3
223	Ice melting properties of steel fiber modified asphalt mixtures with induction heating. IOP Conference Series: Materials Science and Engineering, 2017, 182, 012042.	0.6	3
224	Controllable synthesis of SiC wrapped LDHs to reinforce microwave absorption and exothermic properties of styrene-butadiene-styrene (SBS) polymer modified asphalt. Materials Research Express, 2021, 8, 035501.	1.6	3
225	A Method for Improvement of the Heating Efficiency of Conductive Asphalt Pavement. Journal of Testing and Evaluation, 2014, 42, 1141-1147.	0.7	3
226	Synthesis of Hydrotalcite from Phosphate Tailings and Its Effect on the Anti-Ultraviolet Aging Properties of Asphalt Binder. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	3
227	Research on mechanical characteristics of conductive asphalt concrete by indirect tensile test. , 2009, , .		2
228	Numerical and Experimental Validation of Full-Depth Asphalt Slab Using Capturing Solar Energy. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	2
229	Physical and Chemical Properties of Rejuvenating Aged Binder with Waste Cooking Oil and Its Bioasphalt. Springer Proceedings in Energy, 2018, , 591-606.	0.3	2
230	Effect of Waste Cooking Oil Viscosity on Basic and Rheological Properties of Aged Asphalt. Springer Proceedings in Energy, 2018, , 647-656.	0.3	2
231	Preparation and Electrical Properties of Piezoelectric-Embedded Asphalt Mixture. Journal of Testing and Evaluation, 2014, 42, 1119-1126.	0.7	2
232	Evaluation of low temperature properties of warm mix asphalt. Proceedings of SPIE, 2009, , .	0.8	1
233	Research on tensile strength characteristics of bridge deck pavement bonding layers. Proceedings of SPIE, 2009, , .	0.8	1
234	Effects of loading rate on flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 656-658.	1.0	1

#	Article	IF	CITATIONS
235	A study on adhesion characteristics of gneiss with asphalt. , 2010, , .		1
236	Comparison on rheological properties of origin and layered nano-montmorillonite modified asphalt binder. , 2010, , .		1
237	The research of silicone rubber sealant for road joint. , 2010, , .		1
238	Research on shear strength and fatigue characteristics of bridge deck pavement bonding layers. , 2010, , .		1
239	Effects of graphene oxide on asphalt binders. , 2019, , 203-226.		1
240	Investigation of Interaction between the Silicone Rubber Sealant and Concrete Substrate. Journal of Testing and Evaluation, 2012, 40, 20120048.	0.7	1
241	Investigation of the low-temperature performance of asphalt mixtures via fatigue and linear contraction and creep test. Proceedings of SPIE, 2008, , .	0.8	Ο
242	Investigation of fatigue properties of granite asphalt mixtures containing hydrated lime. Proceedings of SPIE, 2009, , .	0.8	0
243	Research on the rheological characteristics of layered nano-montmorillonite modified asphalt binder. , 2010, , .		Ο
244	Influence of cement on low-temperature property of granite asphalt mixtures. , 2010, , .		0
245	Analysis on Recycled Use of Old Cement Pavement Materials. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
246	Analysis of Variability of Degree of Compaction and Air Void Content in Asphalt Pavement of Baosan Expressway. Communications in Computer and Information Science, 2011, , 163-170.	0.5	0
247	The research of interaction between the silicone rubber sealant and concrete. , 2011, , .		Ο
248	The research on the air void of the conductive asphalt concrete. , 2011, , .		0
249	Study in the joint sealants of the concrete pavements. , 2011, , .		Ο
250	Mechanism and Investment Analysis of Recycling Gasoline Solvent with Mineral Powder for Asphalt Cleaning. Applied Sciences (Switzerland), 2020, 10, 5761.	2.5	0
251	OS13-2-6 Investigation of Static and Dynamic Response of Recycled Asphalt Mixture Using Indirect Tensile Test. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6, _OS13-2-6OS13-2-6	0.0	0
252	Research on Structural Performance of Conductive Asphalt Pavement Buried Tubes in Moving Load. Journal of Testing and Evaluation, 2012, 40, 20120062.	0.7	0

#	Article	IF	CITATIONS
253	Evaluation of the Volume Stability and Resource Benefit of Basic Oxygen Furnace Slag and Its Asphalt Mixture Based on Field Application. Advances in Civil Engineering, 2021, 2021, 1-10.	0.7	Ο