List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3348114/publications.pdf Version: 2024-02-01

		117619	114455
107	4,722	34	63
papers	citations	h-index	g-index
113	113	113	4472
all docs	docs citations	times ranked	citing authors

ALEKSI LEHIKOINEN

#	Article	IF	CITATIONS
1	Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds. Science, 2006, 312, 1959-1961.	12.6	399
2	Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 835-842.	2.6	321
3	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
4	Joint species distribution modelling with the <scp>r</scp> â€package H <scp>msc</scp> . Methods in Ecology and Evolution, 2020, 11, 442-447.	5.2	245
5	Consistent response of bird populations to climate change on two continents. Science, 2016, 352, 84-87.	12.6	212
6	Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology, 2013, 19, 2071-2081.	9.5	178
7	A review and metaâ€analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis, 2018, 160, 489-515.	1.9	117
8	Spring arrival of birds depends on the North Atlantic Oscillation. Journal of Avian Biology, 2004, 35, 210-216.	1.2	114
9	Patterns of climateâ€induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Global Change Biology, 2014, 20, 2995-3003.	9.5	101
10	Tracking Progress Toward EU Biodiversity Strategy Targets: EU Policy Effects in Preserving its Common Farmland Birds. Conservation Letters, 2017, 10, 395-402.	5.7	94
11	Winter climate affects subsequent breeding success of common eiders. Global Change Biology, 2006, 12, 1355-1365.	9.5	89
12	Declining population trends of European mountain birds. Global Change Biology, 2019, 25, 577-588.	9.5	82
13	North by northâ€west: climate change and directions of density shifts in birds. Global Change Biology, 2016, 22, 1121-1129.	9.5	80
14	Common montane birds are declining in northern Europe. Journal of Avian Biology, 2014, 45, 3-14.	1.2	79
15	The Breeding Ranges of Central European and Arctic Bird Species Move Poleward. PLoS ONE, 2012, 7, e43648.	2.5	78
16	A state-of-the-art review on birds as indicators of biodiversity: Advances, challenges, and future directions. Ecological Indicators, 2020, 118, 106728.	6.3	73
17	The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia, 2011, 165, 349-355.	2.0	72
18	Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biological Conservation, 2013, 168, 99-107.	4.1	71

#	Article	IF	CITATIONS
19	Effects of climate change on European ducks: what do we know and what do we need to know?. Wildlife Biology, 2013, 19, 404-419.	1.4	71
20	Climateâ€driven changes in winter abundance of a migratory waterbird in relation to EU protected areas. Diversity and Distributions, 2015, 21, 571-582.	4.1	70
21	Protected areas act as a buffer against detrimental effects of climate change—Evidence from largeâ€scale, longâ€term abundance data. Global Change Biology, 2019, 25, 304-313.	9.5	62
22	Reproduction of the common buzzard at its northern range margin under climatic change. Oikos, 2009, 118, 829-836.	2.7	58
23	Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proceedings of the United States of America, 2020, 117, 18557-18565.	7.1	57
24	Causes and consequences of fine-scale breeding dispersal in a female-philopatric species. Oecologia, 2011, 166, 327-336.	2.0	52
25	Continentâ€scale global change attribution in European birds ―combining annual and decadal time scales. Global Change Biology, 2016, 22, 530-543.	9.5	51
26	Habitatâ€specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Animal Conservation, 2016, 19, 88-95.	2.9	51
27	Large-scale change in the sex ratio of a declining eider Somateria mollissima population. Wildlife Biology, 2008, 14, 288-301.	1.4	47
28	The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. European Journal of Wildlife Research, 2013, 59, 245-256.	1.4	47
29	Phenology of the avian spring migratory passage in Europe and North America: Asymmetric advancement in time and increase in duration. Ecological Indicators, 2019, 101, 985-991.	6.3	47
30	Climate change reshuffles northern species within their niches. Nature Climate Change, 2022, 12, 587-592.	18.8	46
31	Delayed autumn migration in northern European waterfowl. Journal of Ornithology, 2012, 153, 563-570.	1.1	43
32	Large-Scale Monitoring of Waders on Their Boreal and Arctic Breeding Grounds in Northern Europe. Ardea, 2015, 103, 3-15.	0.6	43
33	Habitat―and speciesâ€mediated short―and longâ€ŧerm distributional changes in waterbird abundance linked to variation in European winter weather. Diversity and Distributions, 2019, 25, 225-239.	4.1	41
34	Birds on the move in the face of climate change: High species turnover in northern Europe. Ecology and Evolution, 2017, 7, 8201-8209.	1.9	40
35	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
36	Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Scientific Data, 2021, 8, 21.	5.3	39

#	Article	IF	CITATIONS
37	Substantial decline of Northern European peatland bird populations: Consequences of drainage. Biological Conservation, 2017, 214, 223-232.	4.1	38
38	The role of urban habitats in the abundance of red squirrels (Sciurus vulgaris, L.) in Finland. Urban Forestry and Urban Greening, 2017, 27, 100-108.	5.3	37
39	Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecology and Evolution, 2014, 4, 2991-3003.	1.9	36
40	Adult predation risk drives shifts in parental care strategies: a long-term study. Journal of Animal Ecology, 2011, 80, 49-56.	2.8	34
41	Impacts of climate and landâ€use change on wintering bird populations in Finland. Journal of Avian Biology, 2015, 46, 63-72.	1.2	34
42	Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. Journal of Avian Biology, 2016, 47, 619-628.	1.2	34
43	Impacts of trichomonosis epidemics on Greenfinch <i>Chloris chloris</i> and Chaffinch <i>Fringilla coelebs</i> populations in Finland. Ibis, 2013, 155, 357-366.	1.9	32
44	Climate change, phenology and species detectability in a monitoring scheme. Population Ecology, 2013, 55, 315-323.	1.2	28
45	Prey-switching and Diet of the Great Cormorant During the Breeding Season in the Gulf of Finland. Waterbirds, 2005, 28, 511-515.	0.3	27
46	Do female ornaments indicate quality in eider ducks?. Biology Letters, 2010, 6, 225-228.	2.3	27
47	Matching trends between recent distributional changes of northern-boreal birds and species-climate model predictions. Biological Conservation, 2014, 172, 124-127.	4.1	26
48	Largeâ€ s cale climatic drivers of regional winter bird population trends. Diversity and Distributions, 2016, 22, 1163-1173.	4.1	26
49	Life history events of the Eurasian sparrowhawk <i>Accipiter nisus</i> in a changing climate. Journal of Avian Biology, 2010, 41, 627-636.	1.2	25
50	Impact of climate change and prey abundance on nesting success of a top predator, the goshawk. Oecologia, 2013, 171, 283-293.	2.0	25
51	Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conservation Biology, 2020, 34, 666-676.	4.7	25
52	Response to Comment on "Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds". Science, 2007, 315, 598c-598c.	12.6	24
53	Effects of high latitude protected areas on bird communities under rapid climate change. Global Change Biology, 2017, 23, 2241-2249.	9.5	23
54	Positive impacts of important bird and biodiversity areas on wintering waterbirds under changing temperatures throughout Europe and North Africa. Biological Conservation, 2020, 246, 108549.	4.1	23

#	Article	IF	CITATIONS
55	Wintering bird communities are tracking climate change faster than breeding communities. Journal of Animal Ecology, 2021, 90, 1085-1095.	2.8	23
56	Bird population declines and species turnover are changing the acoustic properties of spring soundscapes. Nature Communications, 2021, 12, 6217.	12.8	23
57	Counteracting wetland overgrowth increases breeding and staging bird abundances. Scientific Reports, 2017, 7, 41391.	3.3	22
58	Advanced Autumn Migration of Sparrowhawk Has Increased the Predation Risk of Long-Distance Migrants in Finland. PLoS ONE, 2011, 6, e20001.	2.5	20
59	Current and Potential Threats to Nordic Duck Populations — A Horizon Scanning Exercise. Annales Zoologici Fennici, 2015, 52, 193-220.	0.6	20
60	Urbanisation of the wood pigeon (Columba palumbus) in Finland. Landscape and Urban Planning, 2015, 134, 188-194.	7.5	20
61	Linking species interactions with phylogenetic and functional distance in European bird assemblages at broad spatial scales. Global Ecology and Biogeography, 2017, 26, 952-962.	5.8	20
62	A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia, 2018, 186, 883-893.	2.0	20
63	Overcoming the challenges of public data archiving for citizen science biodiversity recording and monitoring schemes. Journal of Applied Ecology, 2018, 55, 2544-2551.	4.0	20
64	Gray plumage color is more cryptic than brown in snowy landscapes in a resident color polymorphic bird. Ecology and Evolution, 2020, 10, 1751-1761.	1.9	20
65	Modelling irruptions and population dynamics of the great spotted woodpecker – joint effects of density and cone crops. Oikos, 2011, 120, 1065-1075.	2.7	19
66	Interannual variation and longâ€ŧerm trends in proportions of resident individuals in partially migratory birds. Journal of Animal Ecology, 2016, 85, 570-580.	2.8	19
67	Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Diversity and Distributions, 2017, 23, 308-316.	4.1	19
68	Effects of flywayâ€wide weather conditions and breeding habitat on the breeding abundance of migratory boreal waterbirds. Journal of Avian Biology, 2017, 48, 988-996.	1.2	19
69	Climate-driven synchrony in seed production of masting deciduous and conifer tree species. Journal of Plant Ecology, 0, , rtw117.	2.3	18
70	The role of cormorants, fishing effort and temperature on the catches per unit effort of fisheries in Finnish coastal areas. Fisheries Research, 2017, 190, 175-182.	1.7	18
71	Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conservation Biology, 2021, 35, 834-845.	4.7	18
72	Short-lived species move uphill faster under climate change. Oecologia, 2022, 198, 877-888.	2.0	18

#	Article	IF	CITATIONS
73	DOES SEX-SPECIFIC DUCKLING MORTALITY CONTRIBUTE TO MALE BIAS IN ADULT COMMON EIDERS?. Condor, 2008, 110, 574-578.	1.6	17
74	Breeding phenological response to spring weather conditions in common Finnish birds: resident species respond stronger than migratory species. Journal of Avian Biology, 2017, 48, 611-619.	1.2	17
75	The future distribution of wetland birds breeding in Europe validated against observed changes in distribution. Environmental Research Letters, 2022, 17, 024025.	5.2	17
76	Increasing protected area coverage mitigates climate-driven community changes. Biological Conservation, 2021, 253, 108892.	4.1	16
77	Young and female-biased irruptions in pygmy owls Glaucidium passerinum in southern Finland. Journal of Avian Biology, 2011, 42, 564-569.	1.2	14
78	Can protected areas buffer short-term population changes of resident bird species in a period of intensified forest harvesting?. Biological Conservation, 2020, 244, 108526.	4.1	13
79	Covariation in population trends and demography reveals targets for conservation action. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202955.	2.6	13
80	Role of forest ditching and agriculture on water quality: Connecting the long-term physico-chemical subsurface state of lakes with landscape and habitat structure information. Science of the Total Environment, 2022, 806, 151477.	8.0	13
81	The effects of hatching date on timing of autumn migration in partial migrants – an individual approach. Journal of Avian Biology, 2013, 44, 272-280.	1.2	12
82	Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia, 2016, 181, 313-321.	2.0	12
83	Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE, 2021, 16, e0246572.	2.5	10
84	Organic animal farms increase farmland bird abundance in the Boreal region. PLoS ONE, 2019, 14, e0216009.	2.5	9
85	Population trends of waders on their boreal and arctic breeding grounds in northern Europe. Wader Study, 2019, 126, 200-216.	0.4	9
86	The effects of protected areas on the ecological niches of birds and mammals. Scientific Reports, 2022, 12, .	3.3	8
87	The impact of tree crops and temperature on the timing of frugivorous bird migration. Oecologia, 2020, 193, 1021-1026.	2.0	6
88	Promiscuous specialists: Host specificity patterns among generalist louse flies. PLoS ONE, 2021, 16, e0247698.	2.5	6
89	Snow depth drives habitat selection by overwintering birds in builtâ€up areas, farmlands and forests. Journal of Biogeography, 2022, 49, 630-639.	3.0	6
90	Top–down effects override climate forcing on reproductive success in a declining sea duck. Oikos, 2022, 2022, .	2.7	6

#	Article	IF	CITATIONS
91	Using the first European Breeding Bird Atlas for science and perspectives for the new Atlas. Bird Study, 2019, 66, 149-158.	1.0	5
92	Biodiversity and bird surveys in Finnish environmental impact assessments and follow-up monitoring. Environmental Impact Assessment Review, 2021, 87, 106532.	9.2	4
93	An assessment of relative habitat use as a metric for species' habitat association and degree of specialization. Ecological Indicators, 2022, 135, 108521.	6.3	4
94	A rapid increase of large-sized waterfowl does not explain the population declines of small-sized waterbird at their breeding sites. Global Ecology and Conservation, 2022, 36, e02144.	2.1	4
95	Range shifts of overwintering birds depend on habitat type, snow conditions and habitat specialization. Oecologia, 0, , .	2.0	3
96	Declining peatland bird numbers are not consistent with the increasing Common Crane population. Journal of Ornithology, 2020, 161, 691-700.	1.1	2
97	Luonnon monimuotoisuus ja vihreÃælvytys. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	2
98	Linking climate change vulnerability research and evidence on conservation action effectiveness to safeguard European seabird populations. Journal of Applied Ecology, 2022, 59, 1178-1186.	4.0	2
99	Mets¤onnon turvaava suojelun kohdentaminen Suomessa. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	2
100	Jatkuvapeitteisen metsĤkĤttelyn vaikutukset luonnon monimuotoisuuteen, vesistĶihin, ilmastoon, virkistyskÄÿttĶĶn ja metsĤuhoriskeihin. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	2
101	Occurrence and Behaviour of White-Tailed Eagles Haliaeetus albicilla in Great Cormorant Phalacrocorax Carbo Sinensis Colonies in Countries around the Baltic Sea. Ardea, 2022, 109, .	0.6	2
102	Keskeiset keinot luontokadon pysÄÿttÄĦiseksi. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	1
103	Soiden ennallistamisen suoluonto-, vesistö- ja ilmastovaikutukset. Luontopaneelin yhteenveto ja suositukset luontopolitiikan suunnittelun ja pÃÆPŶksenteon tueksi Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	1
104	Titmice are a better indicator of bird density in Northern European than in Western European forests. Ecology and Evolution, 2022, 12, e8479.	1.9	0
105	Mets¤ıonnon turvaava suojelun kohdentaminen Suomessa. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	0
106	Jatkuvapeitteisen metsäkÃछttelyn ympästö- ja talousvaikutukset: Raportin yhteenveto. Suomen Luontopaneelin Julkaisuja, 0, , .	0.0	0
107	Expanding East: Great Cormorants Phalacrocorax carbo Thriving in the Eastern Baltic and Gulf of Finland. Ardea, 2022, 109, .	0.6	0