Falko Dressler

List of Publications by Citations

Source: https://exaly.com/author-pdf/3348069/falko-dressler-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 196 4,538 32 h-index g-index citations papers 6.22 215 5.2 5,709 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
196	Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. <i>IEEE Transactions on Mobile Computing</i> , 2011 , 10, 3-15	4.6	811
195	On the lifetime of wireless sensor networks. ACM Transactions on Sensor Networks, 2009, 5, 1-39	2.9	368
194	A survey on bio-inspired networking. <i>Computer Networks</i> , 2010 , 54, 881-900	5.4	206
193	On Swarm Intelligence Inspired Self-Organized Networking: Its Bionic Mechanisms, Designing Principles and Optimization Approaches. <i>IEEE Communications Surveys and Tutorials</i> , 2014 , 16, 513-537	37.1	138
192	Traffic information systems: efficient message dissemination via adaptive beaconing 2011 , 49, 173-179		116
191	Progressing toward realistic mobility models in VANET simulations. <i>IEEE Communications Magazine</i> , 2008 , 46, 132-137	9.1	112
190	2014 , 52, 170-177		102
189	2007,		101
188	On the applicability of Two-Ray path loss models for vehicular network simulation 2012 ,		95
187	SlotSwap: strong and affordable location privacy in intelligent transportation systems. <i>IEEE Communications Magazine</i> , 2011 , 49, 126-133	9.1	91
186	Monitoring Bats in the Wild. ACM Transactions on Sensor Networks, 2016, 12, 1-29	2.9	81
185	How Shadowing Hurts Vehicular Communications and How Dynamic Beaconing Can Help. <i>IEEE Transactions on Mobile Computing</i> , 2015 , 14, 1411-1421	4.6	78
184	Bio-inspired networking: from theory to practice 2010 , 48, 176-183		76
183	A study of self-organization mechanisms in ad hoc and sensor networks. <i>Computer Communications</i> , 2008 , 31, 3018-3029	5.1	69
182	Connecting in-body nano communication with body area networks: Challenges and opportunities of the Internet of Nano Things. <i>Nano Communication Networks</i> , 2015 , 6, 29-38	2.9	61
181	Vehicular Networking 2015 ,		59
180	. IEEE Transactions on Vehicular Technology, 2015 , 64, 5411-5423	6.8	57

(2020-2011)

179	Research challenges in intervehicular communication: lessons of the 2010 Dagstuhl Seminar 2011 , 49, 158-164		56
178	. IEEE Transactions on Mobile Computing, 2014 , 13, 1733-1745	4.6	53
177	. IEEE Transactions on Vehicular Technology, 2014 , 63, 1802-1812	6.8	49
176	Vehicular Visible Light Communications: A Survey. <i>IEEE Communications Surveys and Tutorials</i> , 2021 , 23, 161-181	37.1	49
175	The Role of Parked Cars in Content Downloading for Vehicular Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 63, 4606-4617	6.8	47
174	On the feasibility of UMTS-based Traffic Information Systems. <i>Ad Hoc Networks</i> , 2010 , 8, 506-517	4.8	43
173	Performance Assessment of IEEE 802.11p with an Open Source SDR-Based Prototype. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1162-1175	4.6	42
172	From radio telemetry to ultra-low-power sensor networks: tracking bats in the wild 2016 , 54, 129-135		38
171	Implementing The Abstract MAC Layer in Dynamic Networks. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 20, 1832-1845	4.6	35
170	On the Necessity of Accurate IEEE 802.11P Models for IVC Protocol Simulation 2012 ,		34
169	The DYMO Routing Protocol in VANET Scenarios 2007,		33
168	2014,		32
167	Exploiting Virtual Coordinates for Improved Routing Performance in Sensor Networks. <i>IEEE Transactions on Mobile Computing</i> , 2011 , 10, 1214-1226	4.6	32
166	Cooperative Awareness at Low Vehicle Densities: How Parked Cars Can Help See through Buildings 2011 ,		32
165	Virtual Cord Protocol (VCP): A flexible DHT-like routing service for sensor networks 2008,		32
164	2015,		29
163	Impact of Realistic Light Radiation Pattern on Vehicular Visible Light Communication 2017,		29
162	Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. <i>PLoS Biology</i> , 2020 , 18, e3000655	9.7	28

161	Sensor/Actuator Networks in Smart Homes for Supporting Elderly and Handicapped People 2007,		28
160	. IEEE Transactions on Instrumentation and Measurement, 2011 , 60, 336-344	5.2	27
159	Toward reproducibility and comparability of IVC simulation studies: a literature survey 2012 , 50, 82-88		26
158	Experimental Performance Evaluation of Cryptographic Algorithms on Sensor Nodes 2006,		25
157	Not All VANET Broadcasts Are the Same: Context-Aware Class Based Broadcast. <i>IEEE/ACM Transactions on Networking</i> , 2018 , 26, 17-30	3.8	23
156	Cooperative Driving and the Tactile Internet. <i>Proceedings of the IEEE</i> , 2019 , 107, 436-446	14.3	23
155	A rule-based system for programming self-organized sensor and actor networks. <i>Computer Networks</i> , 2009 , 53, 1737-1750	5.4	22
154	Content downloading in vehicular networks: Bringing parked cars into the picture 2012,		22
153	Performance Evaluation of IEEE 802.15.4 LR-WPAN for Industrial Applications 2008,		22
152	Enabling Situation Awareness at Intersections for IVC Congestion Control Mechanisms. <i>IEEE Transactions on Mobile Computing</i> , 2016 , 15, 1674-1685	4.6	21
151	Towards an Open Source IEEE 802.11p stack: A full SDR-based transceiver in GNU Radio 2013,		21
150	Jerk Beaconing: A dynamic approach to platooning 2015 ,		21
149	Towards inter-vehicle communication strategies for platooning support 2014,		21
148	On the applicability of fair and adaptive data dissemination in traffic information systems. <i>Ad Hoc Networks</i> , 2014 , 13, 428-443	4.8	20
147	Emissions vs. Travel Time: Simulative Evaluation of the Environmental Impact of ITS 2010,		19
146	Realistic Simulation of Network Protocols in VANET Scenarios 2007,		19
145	BATS: Adaptive Ultra Low Power Sensor Network for Animal Tracking. Sensors, 2018, 18,	3.8	19
144	Vehicular Micro Clouds as Virtual Edge Servers for Efficient Data Collection 2017,		18

(2016-2011)

143	Toward Realistic Simulation of Intervehicle Communication. <i>IEEE Vehicular Technology Magazine</i> , 9.9	18
142	To crash or not to crash: Estimating its likelihood and potentials of beacon-based IVC systems 2012,	18
141	Bridging worlds: Integrating hardware-in-the-loop testing with large-scale VANET simulation 2018,	16
140	Car-to-Pedestrian communication with MEC-support for adaptive safety of Vulnerable Road Users. Computer Communications, 2020 , 150, 83-93 5.1	16
139	On the feasibility of vehicular micro clouds 2017 ,	15
138	2015,	15
137	Real-time enabled IEEE 802.15.4 sensor networks in industrial automation 2009,	15
136	Cyber Physical Social Systems: Towards Deeply Integrated Hybridized Systems 2018,	15
135	Fair and adaptive data dissemination for Traffic Information Systems 2012,	14
134	Efficient data handling in vehicular micro clouds. <i>Ad Hoc Networks</i> , 2019 , 91, 101871 4.8	13
133	Using Erasure Codes to overcome reliability issues in energy-constrained sensor networks 2014,	13
132	Protocol design for ultra-low power wake-up systems for tracking bats in the wild 2015 ,	13
131	Simulation of Ad Hoc Routing Protocols using OMNeT++. <i>Mobile Networks and Applications</i> , 2010 , 15, 786-801	13
130	Platoon Formation: Optimized Car to Platoon Assignment Strategies and Protocols 2018,	13
129	Function Centric Nano-Networking: Addressing nano machines in a medical application scenario. Nano Communication Networks, 2017 , 14, 29-39	12
128	Virtual Edge Computing Using Vehicular Micro Clouds 2019 ,	12
127	Analysis of Cell Sojourn Time in Heterogeneous Networks With Small Cells. <i>IEEE Communications Letters</i> , 2016 , 20, 788-791	12
126	Motion-MiX DHT for Wireless Mobile Networks. <i>IEEE Transactions on Mobile Computing</i> , 2016 , 15, 3100-3 <u>4</u> .63	12

125	Simulation study of IEEE 802.15.4 LR-WPAN for industrial applications. <i>Wireless Communications and Mobile Computing</i> , 2009 , 10, n/a-n/a	1.9	12
124	Low-cost interferer detection and classification using TelosB sensor motes 2012,		12
123	Impact of Vehicle Type and Headlight Characteristics on Vehicular VLC Performance 2018,		12
122	Duplicate suppression for efficient floating car data collection in heterogeneous LTE-DSRC vehicular networks. <i>Computer Communications</i> , 2018 , 123, 54-64	5.1	11
121	Towards energy efficient smart phone applications: Energy models for offloading tasks into the cloud 2014 ,		11
120	A simulation tool for automated platooning in mixed highway scenarios 2012,		11
119	Flexible Flow Aggregation for Adaptive Network Monitoring. <i>Local Computer Networks (LCN)</i> , <i>Proceedings of the IEEE Conference on</i> , 2006 ,		11
118	Lifetime Analysis in Heterogeneous Sensor Networks 2006 ,		11
117	A smartphone perspective on computation offloading survey. <i>Computer Communications</i> , 2020 , 159, 133-154	5.1	10
116	How to Keep a Vehicular Micro Cloud Intact 2018 ,		10
116 115	How to Keep a Vehicular Micro Cloud Intact 2018, Effects and Implications of Beacon Collisions in Co-Located IEEE 802.15.4 Networks 2012,		10
115	Effects and Implications of Beacon Collisions in Co-Located IEEE 802.15.4 Networks 2012 ,	4	10
115	Effects and Implications of Beacon Collisions in Co-Located IEEE 802.15.4 Networks 2012, On the Impact of Human Driver Behavior on Intelligent Transportation Systems 2010, Efficient Receive Diversity in Distributed Sensor Networks Using Selective Sample Forwarding. IEEE	4	10
115 114 113	Effects and Implications of Beacon Collisions in Co-Located IEEE 802.15.4 Networks 2012 , On the Impact of Human Driver Behavior on Intelligent Transportation Systems 2010 , Efficient Receive Diversity in Distributed Sensor Networks Using Selective Sample Forwarding. <i>IEEE Transactions on Green Communications and Networking</i> , 2018 , 2, 336-345	4	10
115 114 113	Effects and Implications of Beacon Collisions in Co-Located IEEE 802.15.4 Networks 2012, On the Impact of Human Driver Behavior on Intelligent Transportation Systems 2010, Efficient Receive Diversity in Distributed Sensor Networks Using Selective Sample Forwarding. IEEE Transactions on Green Communications and Networking, 2018, 2, 336-345 On the Need for Passive Monitoring in Sensor Networks 2008,	4.8	10 10 9
115 114 113 112	Effects and Implications of Beacon Collisions in Co-Located IEEE 802.15.4 Networks 2012, On the Impact of Human Driver Behavior on Intelligent Transportation Systems 2010, Efficient Receive Diversity in Distributed Sensor Networks Using Selective Sample Forwarding. IEEE Transactions on Green Communications and Networking, 2018, 2, 336-345 On the Need for Passive Monitoring in Sensor Networks 2008, On the impact of adjacent channel interference in multi-channel VANETs 2016, Vehicular micro cloud in action: On gateway selection and gateway handovers. Ad Hoc Networks,		10 10 9 9

107	Self-localization capable mobile sensor nodes 2009 ,		8
106	On autonomous indoor flights: High-quality real-time localization using low-cost sensors 2012 ,		8
105	Practical Evaluation of the Performance Impact of Security Mechanisms in Sensor Networks. <i>Local Computer Networks (LCN), Proceedings of the IEEE Conference on</i> , 2006 ,		8
104	On High-Speed Flow-based Intrusion Detection using Snort-compatible Signatures. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	7
103	Interconnecting smart cities by vehicles: How feasible is it? 2016 ,		7
102	MCB [A multi-channel beaconing protocol. <i>Ad Hoc Networks</i> , 2016 , 36, 258-269	4.8	7
101	Bloom Hopping: Bloom Filter Based 2-Hop Neighbor Management in VANETs. <i>IEEE Transactions on Mobile Computing</i> , 2019 , 18, 534-545	4.6	7
100	2019,		7
99	. IEEE Journal on Selected Areas in Communications, 2010 , 28, 521-523	14.2	7
98	Inter-Domain Routing and Data Replication in Virtual Coordinate Based Networks 2010,		7
97	Advantages of virtual addressing for efficient and failure tolerant routing in sensor networks 2009,		7
96	Real-time indoor localization support for four-rotor flying robots using sensor nodes 2009,		7
95	Network-centric Actuation Control in Sensor/Actuator Networks based on Bio-inspired Technologies 2006 ,		7
94	Pick the right guy: CQI-based LTE forwarder selection in VANETs 2016 ,		7
93	Combined localization and data transmission in energy-constrained wireless sensor networks 2015,		6
92	On the need for coordinated access control for vehicular visible light communication 2018 ,		6
<i>)-</i> 			
91	An architecture for sender-based addressing for selective sensor network wake-up receivers 2016 ,		6

89	SmartRevoc: An efficient and privacy preserving revocation system using parked vehicles 2013,		6
88	Security in nano communication: Challenges and open research issues 2012 ,		6
87	2016,		6
86	Toward Smart Vehicle-to-Everything-Connected Powertrains: Driving Real Component Test Benches in a Fully Interactive Virtual Smart City. <i>IEEE Vehicular Technology Magazine</i> , 2021 , 16, 75-82	9.9	6
85	Guest Editorial Special Section on Internet-of-Things for Smart Cities and Urban Informatics. <i>IEEE Transactions on Industrial Informatics</i> , 2017 , 13, 748-750	11.9	5
84	Power matters: Automatic Gain Control for a Software Defined Radio IEEE 802.11a/g/p receiver 2015 ,		5
83	FIXIDS: A high-speed signature-based flow intrusion detection system 2018,		5
82	A framework for inter-domain routing in virtual coordinate based mobile networks. <i>Wireless Networks</i> , 2013 , 19, 1611-1626	2.5	5
81	Cluster-based transmit power control in heterogeneous vehicular networks 2015,		5
80	Fairness kills safety: A comparative study for intersection assistance applications 2014,		5
79	ALF: An autonomous localization framework for self-localization in indoor environments 2011,		5
78	QoS-oriented Integrated Network Planning for Industrial Wireless Sensor Networks 2009,		5
77	Cleaning up Web 2.0% Security Mess-at Least Partly. IEEE Security and Privacy, 2016, 14, 48-57	2	5
76	LSTM-characterized Deep Reinforcement Learning for Continuous Flight Control and Resource Allocation in UAV-assisted Sensor Network. <i>IEEE Internet of Things Journal</i> , 2021 , 1-1	10.7	5
75	Content Replication in Vehicular Micro Cloud-based Data Storage: A Mobility-Aware Approach 2018 ,		5
74	Distributed Byzantine-Resilient Multiple-Message Dissemination in Wireless Networks. <i>IEEE/ACM Transactions on Networking</i> , 2021 , 29, 1662-1675	3.8	5
73	Duality Between Coronavirus Transmission and Air-Based Macroscopic Molecular Communication. <i>IEEE Transactions on Molecular, Biological, and Multi-Scale Communications,</i> 2021 , 7, 200-208	2.3	5
72	2019,		4

71	On using BOC modulation in ultra-low power sensor networks for wildlife tracking 2016,		4
70	Keeping Data Alive: Communication Across Vehicular Micro Clouds 2019 ,		4
69	Use both lanes: Multi-channel beaconing for message dissemination in vehicular networks 2013,		4
68	2013,		4
67	On the synchronization of co-located IEEE 802.15.4 networks for IoT applications 2015,		4
66	Performance Evaluation of Network Mobility Handover over Future Aeronautical Data Link 2010,		4
65	Adaptive Load Balancing for Parallel IDS on Multi-Core Systems Using Prioritized Flows 2011,		4
64	Distributed Mass-Spring-Relaxation for Anchor-Free Self-Localization in Sensor and Actor Networks 2011 ,		4
63	Performance impact of and protocol interdependencies of IEEE 802.15.4 security mechanisms 2009 ,		4
62	Self-Organized Network Security Facilities based on Bio-inspired Promoters and Inhibitors. <i>Studies in Computational Intelligence</i> , 2007 , 81-98	0.8	4
61	Improving Network Monitoring through Aggregation of HTTP/1.1 Dialogs in IPFIX 2016,		4
60	The Impact of Head of Line Blocking in Highly Dynamic WLANs. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 7664-7676	6.8	4
59	Continuous Maneuver Control and Data Capture Scheduling of Autonomous Drone in Wireless Sensor Networks. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	4
58	Optimized Assignment of Computational Tasks in Vehicular Micro Clouds 2019 ,		3
57	. IEEE Transactions on Mobile Computing, 2018 , 17, 2321-2333	4.6	3
56	2017,		3
55	Let R talk in groups: A distributed bursting scheme for cluster-based vehicular applications. <i>Vehicular Communications</i> , 2017 , 8, 2-12	5.7	3
54	Selective signal sample forwarding for receive diversity in energy-constrained sensor networks 2017 ,		3

53	Demo abstract: Sender-triggered selective wake-up receiver for low-power sensor networks 2017,		3
52	High Performance Intrusion Detection Using HTTP-Based Payload Aggregation 2017,		3
51	Dialog-based payload aggregation for intrusion detection 2010 ,		3
50	Flow-based Front Payload Aggregation 2009 ,		3
49	Hash tables for efficient flow monitoring: vulnerabilities and countermeasures 2009,		3
48	Realistic simulation and experimental validation of adjacent-channel interference in planning of industrial wireless networks 2011 ,		3
47	Analysis of deficit round robin scheduling for future aeronautical data link 2011,		3
46	On the Feasibility of Mass-Spring-Relaxation for Simple Self-Deployment 2012,		3
45	Requirements and objectives for secure Traffic Information Systems 2008,		3
44	Li-Wi: An upper layer hybrid VLC-WiFi network handover solution. <i>Ad Hoc Networks</i> , 2021 , 102705	4.8	3
43	Towards Mastering Complex Particle Movement and Tracking in Molecular Communication Simulation 2019 ,		3
42	FDLA: A Novel Frequency Diversity and Link Aggregation Solution for Handover in an Indoor Vehicular VLC Network. <i>IEEE Transactions on Network and Service Management</i> , 2021 , 18, 3556-3566	4.8	3
41	Software-Based Real-Time Full-Duplex Relaying: An Experimental Study. <i>IEEE Transactions on Green Communications and Networking</i> , 2020 , 4, 647-656	4	2
40	Cars as the base for service discovery and provision in highly dynamic networks 2016 ,		2
39	Special issue on advances in vehicular networks. Ad Hoc Networks, 2016, 37, 1-2	4.8	2
38	On the impact of street width on 5.9 GHz radio signal propagation in vehicular networks 2014 ,		2
37	Simulating a city-scale community network: From models to first improvements for Freifunk 2017,		2
36	Reliable communication using Erasure Codes for monitoring bats in the wild 2014,		2

(2006-2012)

35	Performance evaluation of network mobility handover over future aeronautical data link. <i>Computer Communications</i> , 2012 , 35, 334-343	5.1	2
34	Network attack detection and defense [Manifesto of the Dagstuhl Perspective Workshop, March 2ndBth, 2008. <i>Computer Science - Research and Development</i> , 2009 , 23, 15-25		2
33	Data-centric cooperative storage in wireless sensor network 2009 ,		2
32	BARAKA: A Hybrid Simulator of SANETs 2007 ,		2
31	Stateful Mobile Modules for Sensor Networks. Lecture Notes in Computer Science, 2010, 63-76	0.9	2
30	Considerations on Quality Metrics for Self-localization Algorithms. <i>Lecture Notes in Computer Science</i> , 2011 , 104-115	0.9	2
29	Towards an IEEE 802.11 Compliant System for Outdoor Vehicular Visible Light Communications. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 5749-5761	6.8	2
28	Poster: First Performance Insights on Our Novel OFDM-based Vehicular VLC Prototype 2018 ,		2
27	Connected and Autonomous Vehicles. IEEE Internet Computing, 2018, 22, 4-5	2.4	2
26	Ultra Low-Power Sensor Networks for Next Generation Wildlife Monitoring 2019,		1
25	Turning Sensor Networks into Distributed Antenna Arrays for Improved Communication Performance. <i>IEEE Communications Magazine</i> , 2019 , 57, 100-105	9.1	1
24	Poster Abstract: Jamming WLAN Data Frames and Acknowledgments using Commodity Hardware 2019 ,		1
23	QQDCA: Adapting IEEE 802.11 EDCA for unicast transmissions at high topology dynamics 2017,		1
22	Energy-efficient monitoring of distributed system resources for self-organizing sensor networks 2013 ,		1
21	Adaptive Data Dissemination in Sensor Networks Using WPDD 2007,		1
20	An adaptive model for reconfigurable autonomous services using profiling. <i>International Journal of Pervasive Computing and Communications</i> , 2007 , 2, 247-260	3.3	1
19	Wireless and Sensor Networks Security (WSNS) A Retrospection 2007,		1
18	Bio-inspired Promoters and Inhibitors for Self-Organized Network Security Facilities 2006,		1

Performance Analysis of UAV Assisted Mobile Communications in THz Channel. IEEE Access, 2021, 9, 1601, 4-160115 17 Low-power and Low-delay WLAN using Wake-up Receivers. IEEE Transactions on Mobile Computing, 4.6 16 **2020**. 1-1 The accuracy of Android energy measurements for offloading computational expensive tasks 2016, 15 1 Efficient Data Gathering for Decentralized Diversity Combining in Heterogeneous Sensor Networks 14 2019, Wideband OFDM-Based Communications in Bus Topology as a Key Enabler for Industry 4.0 13 3.5 1 Networks. IEEE Access, 2021, 9, 114167-114178 Preamble-Less Diversity Combining: Improved Energy-Efficiency in Sensor Networks 2018, 12 Efficient Uplink from Vehicular Micro Cloud Solutions to Data Centers 2018, 11 1 Dwell time estimation at intersections for improved vehicular micro cloud operations. Ad Hoc 4.8 10 Networks, 2021, 122, 102606 Distributed Broadcasting in Dynamic Networks. IEEE/ACM Transactions on Networking, 2021, 1-14 3.8 9 1 8 Hybrid simulation of Sensor and Actor Networks with BARAKA. Wireless Networks, 2010, 16, 1525-1539 2.5 Precise: Predictive Content Dissemination Scheme exploiting realistic mobility patterns. Computer 5.4 O Networks, 2021, 201, 108556 Topics in automotive networking [Series Editorial] 2011, 49, 102-104 Profile-Matching Techniques for On-Demand Software Management in Sensor Networks. Eurasip 5 3.2 Journal on Wireless Communications and Networking, 2007, 2007, 1 A Rule System for Network-Centric Operation in Massively Distributed Systems. Lecture Notes in 0.9 Computer Science, 2008, 364-375 Age of information in molecular communication channels **2021**, 103108 3 Using Vector Fields for Efficient Simulation of Macroscopic Molecular Communication. IEEE 2.3 Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 73-77 . IEEE Access, 2021, 9, 93967-93975 3.5