
Yoshimi Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Fracture Energy of High Strength Double Network Hydrogels. Journal of Physical Chemistry B, 2005, 109, 11559-11562.	2.6	261
2	True Chemical Structure of Double Network Hydrogels. Macromolecules, 2009, 42, 2184-2189.	4.8	258
3	Necking Phenomenon of Double-Network Gels. Macromolecules, 2006, 39, 4641-4645.	4.8	235
4	Effect of Polymer Entanglement on the Toughening of Double Network Hydrogels. Journal of Physical Chemistry B, 2005, 109, 16304-16309.	2.6	177
5	Direct Observation of Damage Zone around Crack Tips in Double-Network Gels. Macromolecules, 2009, 42, 3852-3855.	4.8	156
6	Importance of Entanglement between First and Second Components in High-Strength Double Network Gels. Macromolecules, 2007, 40, 6658-6664.	4.8	129
7	Mechanics of peristaltic locomotion and role of anchoring. Journal of the Royal Society Interface, 2012, 9, 222-233.	3.4	88
8	Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomaterialia, 2010, 6, 1353-1359.	8.3	78
9	Localized Yielding Around Crack Tips of Doubleâ€Network Gels. Macromolecular Rapid Communications, 2008, 29, 1514-1520.	3.9	77
10	Effect of void structure on the toughness of double network hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1246-1254.	2.1	67
11	Tear Velocity Dependence of High-Strength Double Network Gels in Comparison with Fast and Slow Relaxation Modes Observed by Scanning Microscopic Light Scattering. Macromolecules, 2008, 41, 7173-7178.	4.8	36
12	Common mechanics of mode switching in locomotion of limbless and legged animals. Journal of the Royal Society Interface, 2014, 11, 20140205.	3.4	35
13	Linear and Nonlinear Rheology of Mixed Polysaccharide Gels. Pt. <scp>II</scp> . Extrusion, Compression, Puncture and Extension Tests and Correlation with Sensory Evaluation. Journal of Texture Studies, 2014, 45, 30-46.	2.5	22
14	Shear Banding in an F-Actin Solution. Physical Review Letters, 2012, 109, 248303.	7.8	19
15	Regular Patterns on Fracture Surfaces of Polymer Gels. Journal of the Physical Society of Japan, 1996, 65, 2349-2352.	1.6	16
16	Actin Network Formation by Unidirectional Polycation Diffusion. Langmuir, 2007, 23, 6257-6262.	3.5	16
17	Stretching an Elastic Loop: Crease, Helicoid, and Pop Out. Physical Review Letters, 2016, 117, 198003.	7.8	15
18	Solvent effects on the fracture of chemically crosslinked gels. Soft Matter, 2016, 12, 8135-8142.	2.7	14

Υοςηιμι Τανακά

#	ARTICLE	IF	CITATIONS
19	Effects of peel angle on peel force of adhesive tape from soft adherend. Journal of Adhesion Science and Technology, 2016, 30, 2637-2654.	2.6	13
20	3D Helical Micromixer Fabricated by Micro Lostâ€Wax Casting. Advanced Materials Technologies, 2020, 5, 1900794.	5.8	12
21	First Observation of Stickâ^'Slip Instability in Tearing of Poly(vinyl alcohol) Gel Sheets. Macromolecules, 2009, 42, 5425-5426.	4.8	11
22	The Gradient Flow Structure of an Extended Maxwell Viscoelastic Model and a Structure-Preserving Finite Element Scheme. Journal of Scientific Computing, 2019, 78, 1111-1131.	2.3	6
23	Cellular Computation Realizing Intelligence of Slime Mold <i>Physarum Polycephalum</i> . Journal of Computational and Theoretical Nanoscience, 2011, 8, 383-390.	0.4	5
24	Gel dynamics in the mixture of low and high viscosity solvents: Re-entrant volume change induced by dynamical asymmetry. Journal of Chemical Physics, 2020, 152, 184901.	3.0	3
25	Irreversible phase field models for crack growth in industrial applications: thermal stress, viscoelasticity, hydrogen embrittlement. SN Applied Sciences, 2021, 3, 1.	2.9	2
26	Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow. Journal of the Physical Society of Japan, 2018, 87, 054005.	1.6	1
27	Gradient Flow Model of Mode-III Fracture in Maxwell-type Viscoelastic Materials. Journal of the Physical Society of Japan, 2020, 89, 084801.	1.6	1
28	1P178 Coiling of catenaries made from Physarum tube(12. Cell biology,Poster,The 52nd Annual Meeting) Tj ETQ	0000 rgE	3T /Overlock 1

29 Competition between Osmotic Squeezing versus Friction-Driven Swelling of Gels. Gels, 2021, 7, 94. 4.5 C