
João Restivo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chemical Engineering Journal, 2014, 241, 66-76.	6.6	69
2	Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chemical Engineering Journal, 2015, 263, 119-126.	6.6	54
3	Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catalysis Today, 2015, 241, 73-79.	2.2	48
4	Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chemical Engineering Journal, 2016, 293, 102-111.	6.6	47
5	Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chinese Journal of Catalysis, 2014, 35, 896-905.	6.9	46
6	Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. Journal of Hazardous Materials, 2012, 239-240, 249-256.	6.5	42
7	Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chemical Engineering Journal, 2017, 309, 197-205.	6.6	41
8	Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chemical Engineering Journal, 2013, 230, 115-123.	6.6	40
9	Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catalysis Today, 2015, 249, 213-219.	2.2	31
10	Catalytic ozonation of oxalic acid using carbon nanofibres on macrostructured supports. Water Science and Technology, 2012, 65, 1854-1862.	1.2	23
11	Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Science and Technology, 2013, 68, 1377-1383.	1.2	23
12	Nanostructured Layers of Mechanically Processed Multiwalled Carbon Nanotubes for Catalytic Ozonation of Organic Pollutants. ACS Applied Nano Materials, 2020, 3, 5271-5284.	2.4	16
13	Nitrate Catalytic Reduction over Bimetallic Catalysts: Catalyst Optimization. Journal of Carbon Research, 2020, 6, 78.	1.4	11
14	Influence of organic matter formed during oxidative processes in the catalytic reduction of nitrate. Journal of Environmental Chemical Engineering, 2021, 9, 105545.	3.3	10
15	Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis. Energies, 2022, 15, 1821.	1.6	9
16	Nano- and macro-structured cerium oxide – Carbon nanotubes composites for the catalytic ozonation of organic pollutants in water. Catalysis Today, 2022, 384-386, 187-196.	2.2	7
17	Influence of preparation methods on the activity of macro-structured ball-milled MWCNT catalysts in the ozonation of organic pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 104578.	3.3	6
18	Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis. Processes, 2020, 8, 1329.	1.3	5

JOãO RESTIVO

#	Article	IF	CITATIONS
19	Towards the efficient reduction of perchlorate in water using rhenium-noble metal bimetallic catalysts supported on activated carbon. Journal of Environmental Chemical Engineering, 2021, 9, 106397.	3.3	5
20	Engineering of Nanostructured Carbon Catalyst Supports for the Continuous Reduction of Bromate in Drinking Water. Journal of Carbon Research, 2022, 8, 21.	1.4	3
21	Copper Supported on Mesoporous Structured Catalysts for NO Reduction. Catalysts, 2022, 12, 170.	1.6	2
22	Synthesis of monometallic macrostructured catalysts for bromate reduction in a continuous catalytic system. Environmental Technology (United Kingdom), 2023, 44, 3834-3849.	1.2	2
23	Palladium Impregnation on Electrospun Carbon Fibers for Catalytic Reduction of Bromate in Water. Processes, 2022, 10, 458.	1.3	1
24	From Nano- to Macrostructured Carbon Catalysts for Water and Wastewater Treatment. , 2021, , 273-308.		0