Hua Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347885/publications.pdf Version: 2024-02-01

Нил Ім

#	Article	IF	CITATIONS
1	Poly(ester amine)-mediated, Aerosol-delivered Akt1 Small Interfering RNA Suppresses Lung Tumorigenesis. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 60-73.	5.6	97
2	miR-491 Inhibits Osteosarcoma Lung Metastasis and Chemoresistance by Targeting αB-crystallin. Molecular Therapy, 2017, 25, 2140-2149.	8.2	86
3	miR-382 Inhibits Osteosarcoma Metastasis and Relapse by Targeting Y Box-Binding Protein 1. Molecular Therapy, 2015, 23, 89-98.	8.2	80
4	miR-150-5p Inhibits Non-Small-Cell Lung Cancer Metastasis and Recurrence by Targeting HMGA2 and β-Catenin Signaling. Molecular Therapy - Nucleic Acids, 2019, 16, 675-685.	5.1	77
5	miR-382 inhibits tumor growth and enhance chemosensitivity in osteosarcoma. Oncotarget, 2014, 5, 9472-9483.	1.8	65
6	Chondroitin sulfate extracted from the Styela clava tunic suppresses TNF-α-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-κB signal in JB6 cells. Cancer Letters, 2008, 264, 93-100.	7.2	57
7	Decreased Expression of miR216a Contributes to Non–Small-Cell Lung Cancer Progression. Clinical Cancer Research, 2014, 20, 4705-4716.	7.0	53
8	miR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling. Molecular Therapy - Nucleic Acids, 2017, 8, 111-122.	5.1	50
9	miR-424 acts as a tumor radiosensitizer by targeting aprataxin in cervical cancer. Oncotarget, 2016, 7, 77508-77515.	1.8	31
10	KRASQ61H Preferentially Signals through MAPK in a RAF Dimer-Dependent Manner in Non–Small Cell Lung Cancer. Cancer Research, 2020, 80, 3719-3731.	0.9	30
11	Roles of protein kinase B Akt in lung cancer. Frontiers in Bioscience - Elite, 2010, E2, 1472-1484.	1.8	27
12	GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level. Cell Death and Disease, 2018, 9, 524.	6.3	26
13	miR-124 Inhibits Lung Tumorigenesis Induced by K-ras Mutation and NNK. Molecular Therapy - Nucleic Acids, 2017, 9, 145-154.	5.1	23
14	Restoration of mutant K-Ras repressed miR-199b inhibits K-Ras mutant non-small cell lung cancer progression. Journal of Experimental and Clinical Cancer Research, 2019, 38, 165.	8.6	15
15	FOXO1 and FOXO3a sensitize non-small-cell lung cancer cells to cisplatin-induced apoptosis independent of Bim. Acta Biochimica Et Biophysica Sinica, 2020, 52, 1348-1359.	2.0	15
16	<scp>GRP75</scp> â€mediated upregulation of <scp>HMGA1</scp> stimulates stage <scp>I</scp> lung adenocarcinoma progression by activating <scp>JNK</scp> / <scp>câ€JUN</scp> signaling. Thoracic Cancer, 2021, 12, 1558-1569.	1.9	14
17	<scp>BCAR1</scp> promotes proliferation and cell growth in lung adenocarcinoma via upregulation of <scp>POLR2A</scp> . Thoracic Cancer, 2020, 11, 3326-3336.	1.9	12
18	BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. International Journal of Biological Sciences, 2021, 17, 2461-2475.	6.4	11

Hua Jin

#	Article	IF	CITATIONS
19	The miR-23a/27a/24-2 cluster promotes postoperative progression of early-stage non-small cell lung cancer. Molecular Therapy - Oncolytics, 2022, 24, 205-217.	4.4	9
20	miR-125a Promotes the Progression of Giant Cell Tumors of Bone by Stimulating IL-17A and β-Catenin Expression. Molecular Therapy - Nucleic Acids, 2018, 13, 493-502.	5.1	5