Ashish Tripathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-Enhanced Raman Spectroscopy for Detection of Threat Chemicals with Portable Raman Spectrometers. , 2021, , .		0
2	Dry Reactive H2O2–Polymer Complexes for the Degradation of Mustard Gas. ACS Applied Polymer Materials, 2020, 2, 4640-4646.	4.4	7
3	Effect of substituents on surface equilibria of thiophenols and isoquinolines on gold substrates studied using surface-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 15953-15965.	2.8	10
4	Molecular Structure and Solvent Factors Influencing SERS on Planar Gold Substrates. Journal of Physical Chemistry C, 2018, 122, 10205-10216.	3.1	16
5	Development of inkjet-deposited test standards for optical sensors. , 2018, , .		0
6	Chemical fingerprint identification system: beyond concept and towards applications for field expeditionary military forensic analysis. , 2018, , .		0
7	Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates. Applied Spectroscopy, 2017, 71, 728-734.	2.2	18
8	Reassessing SERS enhancement factors: using thermodynamics to drive substrate design. Faraday Discussions, 2017, 205, 547-560.	3.2	15
9	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	3.2	22
10	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	3.2	14
11	Identification of Nucleophilic and Electrophilic Binding Sites on Gold Surface-Enhanced Raman Substrates. Journal of Physical Chemistry C, 2016, 120, 23523-23528.	3.1	9
12	Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection. Analytical Chemistry, 2016, 88, 10513-10522.	6.5	65
13	Critical Role of Adsorption Equilibria on the Determination of Surface-Enhanced Raman Enhancement. ACS Nano, 2015, 9, 584-593.	14.6	43
14	Ultraviolet Resonance Raman Spectroscopy of Explosives in Solution and the Solid State. Journal of Physical Chemistry A, 2013, 117, 4158-4166.	2.5	24
15	Kinetics and Reaction Mechanisms of Thiophenol Adsorption on Gold Studied by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 22834-22842.	3.1	50
16	Surface-Enhanced Raman Scattering (SERS) Evaluation Protocol for Nanometallic Surfaces. Applied Spectroscopy, 2013, 67, 396-403.	2.2	23
17	Standard method for characterizing SERS substrates. Proceedings of SPIE, 2012, , .	0.8	1
18	Characterization of Polymorphic States in Energetic Samples of 1,3,5-Trinitro-1,3,5-Triazine (RDX) Fabricated Using Drop-on-Demand Inkjet Technology. Applied Spectroscopy, 2012, 66, 628-635.	2.2	33

Ashish Tripathi

#	Article	IF	CITATIONS
19	Biomolecule Raman spectral temporal flux from resting bacillus spores in deionized water matrix. , 2012, , .		0
20	Semi-Automated Detection of Trace Explosives in Fingerprints on Strongly Interfering Surfaces with Raman Chemical Imaging. Applied Spectroscopy, 2011, 65, 611-619.	2.2	59
21	Proximal and point detection of contaminated surfaces using Raman spectroscopy. Proceedings of SPIE, 2011, , .	0.8	1
22	Fate study of water-borne gram positive vegetative bacterial cells with Raman microscopy. , 2010, , .		0
23	Water matrix and age effects on microorganism Raman microspectroscopy. , 2010, , .		Ο
24	Bacterial mixture identification using Raman and surfaceâ€enhanced Raman chemical imaging. Journal of Raman Spectroscopy, 2010, 41, 1632-1637.	2.5	40
25	Trace explosive detection in fingerprints with Raman chemical imaging. , 2010, , .		7
26	Raman and Surface-Enhanced Raman for Military Applications. AIP Conference Proceedings, 2010, , .	0.4	5
27	Bioaerosol Analysis with Raman Chemical Imaging Microspectroscopy. Analytical Chemistry, 2009, 81, 6981-6990.	6.5	35
28	Raman Chemical Imaging of Explosive-Contaminated Fingerprints. Applied Spectroscopy, 2009, 63, 1197-1203.	2.2	51
29	Bacterial mixture analysis with Raman chemical imaging microspectroscopy. Proceedings of SPIE, 2009,	0.8	Ο
30	Waterborne Pathogen Detection Using Raman Spectroscopy. Applied Spectroscopy, 2008, 62, 1-9.	2.2	51
31	Detection and identification of a water mixture of E. coli cells and B. subtilis spores with Raman chemical imaging microscopy. , 2007, , .		2
32	Biological substance characterization in water matrices with Raman microspectroscopy. , 2007, , .		0
33	Biological Substance Characterization in Water Matrices with Raman Microscopy. , 2007, , .		Ο
34	Closed tube sample introduction for gas chromatography–ion mobility spectrometry analysis of water contaminated with a chemical warfare agent surrogate compound. Analytica Chimica Acta, 2006, 556, 455-461.	5.4	32
35	Novel biomarkers for Gram-type differentiation of bacteria by pyrolysis–gas chromatography–mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2005, 73, 29-38.	5.5	35
36	Comparison of the kinetics of thermal decomposition of biological substances between thermogravimetry and a fielded pyrolysis bioaerosol detector. Thermochimica Acta, 2005, 437, 87-99.	2.7	8

Ashish Tripathi

#	Article	IF	CITATIONS
37	Characterization of microorganisms by thermogravimetric analysis–mass spectrometry. Analytica Chimica Acta, 2005, 536, 283-293.	5.4	22
38	Orthogonal analysis of mass and spectral based technologies for the field detection of bioaerosols. Analytica Chimica Acta, 2004, 513, 365-377.	5.4	18
39	Correlation of Mass Spectrometry Identified Bacterial Biomarkers from a Fielded Pyrolysis-Gas Chromatography-Ion Mobility Spectrometry Biodetector with the Microbiological Gram Stain Classification Scheme. Analytical Chemistry, 2004, 76, 6492-6499.	6.5	48
40	<title>Field detection and identification of a bioaerosol suite by pyrolysis-gas chromatography-ion mobility spectrometry</title> . , 2002, , .		0
41	Measurement and modeling of individual carbonaceous particle temperature profiles during fast CO2 laser heating. Thermochimica Acta, 2002, 388, 183-197.	2.7	8
42	Measurement and modeling of individual carbonaceous particle temperature profiles during fast CO2 laser heating. Thermochimica Acta, 2002, 388, 199-213.	2.7	2
43	Optimization of quartz tube pyrolysis atmospheric pressure ionization mass spectrometry for the generation of bacterial biomarkers. Rapid Communications in Mass Spectrometry, 2001, 15, 1672-1680.	1.5	14
44	Field detection and identification of a bioaerosol suite by pyrolysis-gas chromatography-ion mobility spectrometry. Field Analytical Chemistry and Technology, 2001, 5, 190-204.	0.8	31
45	Detection of gram-negativeErwinia herbicola outdoor aerosols with pyrolysis-gas chromatography/ion-mobility spectrometry. Field Analytical Chemistry and Technology, 2000, 4, 111-126.	0.8	25
46	Field detection of bacillus spore aerosols with stand-alone pyrolysis-gas chromatography-ion mobility spectrometry. Field Analytical Chemistry and Technology, 1999, 3, 315-326.	0.8	34
47	Effect of Porous and Nonporous Carbonaceous Substrates on Polystyrene Thermal Degradation during Fast CO2Laser Heating. Energy & amp; Fuels, 1999, 13, 984-991.	5.1	1
48	<title>Field detection of bacillus spore aerosols with stand-alone pyrolysis-gas chromatography and ion mobility spectrometry</title> . , 1999, 3853, 122.		1
49	High speed, two-wavelength radiation thermometry of single micro particles during CO2 laser heating. Journal of Analytical and Applied Pyrolysis, 1994, 28, 55-70.	5.5	11
50	Development of a laser devolatilization gas chromatography/mass spectrometry technique for single coal particles. Energy & amp; Fuels, 1993, 7, 1006-1012.	5.1	14