Vicenta A Devesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of thermal treatments on arsenic species contents in food. Food and Chemical Toxicology, 2008, 46, 1-8.	1.8	291
2	Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Experimental Biology and Medicine, 2007, 232, 3-13.	1.1	179
3	Total and Inorganic Arsenic in Fresh and Processed Fish Products. Journal of Agricultural and Food Chemistry, 2000, 48, 4369-4376.	2.4	178
4	Heavy Metal, Total Arsenic, and Inorganic Arsenic Contents of Algae Food Products. Journal of Agricultural and Food Chemistry, 2002, 50, 918-923.	2.4	173
5	Molecular Mechanisms of the Diabetogenic Effects of Arsenic: Inhibition of Insulin Signaling by Arsenite and Methylarsonous Acid. Environmental Health Perspectives, 2007, 115, 734-742.	2.8	138
6	Vegetables Collected in the Cultivated Andean Area of Northern Chile:Â Total and Inorganic Arsenic Contents in Raw Vegetables. Journal of Agricultural and Food Chemistry, 2002, 50, 642-647.	2.4	133
7	Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation) Tj ETQq1 1 0.78	4314 rgB⊺ 1.3	- /Overlock 1 122
8	Endogenous Reductants Support the Catalytic Function of Recombinant Rat Cyt19, an Arsenic Methyltransferase. Chemical Research in Toxicology, 2004, 17, 404-409.	1.7	111
9	Contribution of Water, Bread, and Vegetables (Raw and Cooked) to Dietary Intake of Inorganic Arsenic in a Rural Village of Northern Chile. Journal of Agricultural and Food Chemistry, 2004, 52, 1773-1779.	2.4	106
10	Accumulation of heavy metals and As in wetland birds in the area around Doñana National Park affected by the Aznalcollar toxic spill. Science of the Total Environment, 1999, 242, 293-308.	3.9	105
11	Arsenic in Cooked Seafood Products:Â Study on the Effect of Cooking on Total and Inorganic Arsenic Contents. Journal of Agricultural and Food Chemistry, 2001, 49, 4132-4140.	2.4	94
12	In Vitro Study of Transporters Involved in Intestinal Absorption of Inorganic Arsenic. Chemical Research in Toxicology, 2012, 25, 446-453.	1.7	70
13	Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19, 1460-1467.	1.6	69
14	Mercury and selenium in fish and shellfish: Occurrence, bioaccessibility and uptake by Caco-2 cells. Food and Chemical Toxicology, 2012, 50, 2696-2702.	1.8	65
15	Trace elements in blood collected from birds feeding in the area around Doñana National Park affected by the toxic spill from the Aznalcóllar mine. Science of the Total Environment, 1999, 242, 309-323.	3.9	64
16	Arsenicals in maternal and fetal mouse tissues after gestational exposure to arsenite. Toxicology, 2006, 224, 147-155.	2.0	64
17	Glutathione Modulates Recombinant Rat Arsenic (+3 Oxidation State) Methyltransferase-Catalyzed Formation of Trimethylarsine Oxide and Trimethylarsine. Chemical Research in Toxicology, 2004, 17, 1621-1629.	1.7	63
18	Total and inorganic arsenic in the fauna of the Guadalquivir estuary: environmental and human health implications. Science of the Total Environment, 1999, 242, 261-270.	3.9	61

#	Article	IF	CITATIONS
19	Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype. Toxicology and Applied Pharmacology, 2005, 204, 164-169.	1.3	60
20	Effect of Cooking Temperatures on Chemical Changes in Species of Organic Arsenic in Seafood. Journal of Agricultural and Food Chemistry, 2001, 49, 2272-2276.	2.4	54
21	Differential toxicity and gene expression in Caco-2 cells exposed to arsenic species. Toxicology Letters, 2013, 218, 70-80.	0.4	52
22	Application of column switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples. Journal of Analytical Atomic Spectrometry, 2001, 16, 390-397.	1.6	50
23	Organoarsenical Species Contents in Fresh and Processed Seafood Products. Journal of Agricultural and Food Chemistry, 2002, 50, 924-932.	2.4	50
24	Characterization of the Intestinal Absorption of Arsenate, Monomethylarsonic Acid, and Dimethylarsinic Acid Using the Caco-2 Cell Line. Chemical Research in Toxicology, 2010, 23, 547-556.	1.7	50
25	Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 2005, 208, 186-197.	1.3	49
26	Toxic trace elements at gastrointestinal level. Food and Chemical Toxicology, 2015, 86, 163-175.	1.8	49
27	Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 2008, 227, 26-35.	1.3	47
28	Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. Toxicology Letters, 2014, 224, 40-46.	0.4	46
29	Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Critical Reviews in Food Science and Nutrition, 2019, 59, 1534-1545.	5.4	44
30	In Vitro Study of Intestinal Transport of Inorganic and Methylated Arsenic Species by Caco-2/HT29-MTX Cocultures. Chemical Research in Toxicology, 2012, 25, 2654-2662.	1.7	42
31	Kinetic Study of Transformations of Arsenic Species during Heat Treatment. Journal of Agricultural and Food Chemistry, 2001, 49, 2267-2271.	2.4	40
32	Arsenic and fluoride induce neural progenitor cell apoptosis. Toxicology Letters, 2011, 203, 237-244.	0.4	40
33	In vitro study of intestinal transport of arsenite, monomethylarsonous acid, and dimethylarsinous acid by Caco-2 cell line. Toxicology Letters, 2011, 204, 127-133.	0.4	40
34	Quantification of Fluoride in Food by Microwave Acid Digestion and Fluoride Ion-Selective Electrode. Journal of Agricultural and Food Chemistry, 2013, 61, 10708-10713.	2.4	39
35	Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells. Toxicology, 2013, 311, 147-153.	2.0	37
36	Evaluation of Iodine Bioavailability in Seaweed Using <i>in Vitro</i> Methods. Journal of Agricultural and Food Chemistry, 2017, 65, 8435-8442.	2.4	37

#	Article	IF	CITATIONS
37	Speciation of cationic arsenic species in seafood by coupling liquid chromatography with hydride generation atomic fluorescence detection. Journal of Analytical Atomic Spectrometry, 2000, 15, 1501-1507.	1.6	36
38	ls it possible to agree on a value for inorganic arsenic in food? The outcome of IMEP-112. Analytical and Bioanalytical Chemistry, 2012, 404, 2475-2488.	1.9	36
39	Determination of arsenic species in a freshwater crustaceanProcambarus clarkii. Applied Organometallic Chemistry, 2002, 16, 123-132.	1.7	34
40	Metabolism of Inorganic Arsenic in Intestinal Epithelial Cell Lines. Chemical Research in Toxicology, 2012, 25, 2402-2411.	1.7	34
41	Effects of sodium fluoride on immune response in murine macrophages. Toxicology in Vitro, 2016, 34, 81-87.	1.1	32
42	Toxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety. Food Chemistry, 2020, 306, 125478.	4.2	31
43	Dietary Strategies To Reduce the Bioaccessibility of Arsenic from Food Matrices. Journal of Agricultural and Food Chemistry, 2016, 64, 923-931.	2.4	29
44	Commonalities in Metabolism of Arsenicals. Environmental Chemistry, 2005, 2, 161.	0.7	27
45	Performance of laboratories in speciation analysis in seafood – Case of methylmercury and inorganic arsenic. Food Control, 2011, 22, 1928-1934.	2.8	27
46	Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology, 2015, 331, 119-124.	2.0	27
47	Transformation of Arsenic Species during in Vitro Gastrointestinal Digestion of Vegetables. Journal of Agricultural and Food Chemistry, 2013, 61, 12164-12170.	2.4	26
48	Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material. Food and Chemical Toxicology, 2013, 56, 363-370.	1.8	26
49	Estimation of Arsenic Intake from Drinking Water and Food (Raw and Cooked) in a Rural Village of Northern Chile. Urine as a Biomarker of Recent Exposure. International Journal of Environmental Research and Public Health, 2015, 12, 5614-5633.	1.2	26
50	In vitro evaluation of inorganic mercury and methylmercury effects on the intestinal epithelium permeability. Food and Chemical Toxicology, 2014, 74, 349-359.	1.8	25
51	Inorganic arsenic causes intestinal barrier disruption. Metallomics, 2019, 11, 1411-1418.	1.0	25
52	Metal(loid) contamination in seafood products. Critical Reviews in Food Science and Nutrition, 2017, 57, 3715-3728.	5.4	23
53	Characterization of the binding capacity of mercurial species in <i>Lactobacillus</i> strains. Journal of the Science of Food and Agriculture, 2017, 97, 5107-5113.	1.7	23
54	Organoarsenical Species Contents in Cooked Seafood. Journal of Agricultural and Food Chemistry, 2005, 53, 8813-8819.	2.4	22

#	Article	IF	CITATIONS
55	In vitro evaluation of intestinal fluoride absorption using different cell models. Toxicology Letters, 2012, 210, 311-317.	0.4	22
56	Reduction of mercury bioaccessibility using dietary strategies. LWT - Food Science and Technology, 2016, 71, 10-16.	2.5	22
57	Estimated intake levels of methylmercury in children, childbearing age and pregnant women in a Mediterranean region, Murcia, Spain. European Journal of Pediatrics, 2009, 168, 1075-1080.	1.3	21
58	Characterization of the intestinal absorption of inorganic mercury in Caco-2 cells. Toxicology in Vitro, 2015, 29, 93-102.	1.1	21
59	In vivo evaluation of the effect of arsenite on the intestinal epithelium and associated microbiota in mice. Archives of Toxicology, 2019, 93, 2127-2139.	1.9	21
60	Arsenic exposure of child populations in Northern Argentina. Science of the Total Environment, 2019, 669, 1-6.	3.9	21
61	In vitro study of intestinal transport of fluoride using the Caco-2 cell line. Food and Chemical Toxicology, 2013, 55, 156-163.	1.8	20
62	Factors affecting the bioaccessibility of fluoride from seafood products. Food and Chemical Toxicology, 2013, 59, 104-110.	1.8	19
63	Dietary microplastics: Occurrence, exposure and health implications. Environmental Research, 2022, 212, 113150.	3.7	18
64	Transformation of Organoarsenical Species by the Microflora of Freshwater Crayfish. Journal of Agricultural and Food Chemistry, 2005, 53, 10297-10305.	2.4	17
65	Dietary compounds as modulators of metals and metalloids toxicity. Critical Reviews in Food Science and Nutrition, 2018, 58, 2055-2067.	5.4	17
66	Polyphosphate in Lactobacillus and Its Link to Stress Tolerance and Probiotic Properties. Frontiers in Microbiology, 2018, 9, 1944.	1.5	17
67	<i>In Vitro</i> Characterization of the Intestinal Absorption of Methylmercury using a Caco-2 Cell Model. Chemical Research in Toxicology, 2014, 27, 254-264.	1.7	16
68	Influence of Physiological Gastrointestinal Parameters on the Bioaccessibility of Mercury and Selenium from Swordfish. Journal of Agricultural and Food Chemistry, 2016, 64, 690-698.	2.4	16
69	Use of <i>Saccharomyces cerevisiae</i> To Reduce the Bioaccessibility of Mercury from Food. Journal of Agricultural and Food Chemistry, 2017, 65, 2876-2882.	2.4	16
70	Environmental arsenic as a disruptor of insulin signaling. Me, 2008, 10, 1-7.	1.0	16
71	Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 54-67.	1.1	15
72	In Vitro Evaluation of the Protective Role of Lactobacillus StrainsAgainst Inorganic Arsenic Toxicity. Probiotics and Antimicrobial Proteins, 2020, 12, 1484-1491.	1.9	15

#	Article	IF	CITATIONS
73	Proinflammatory effect of trivalent arsenical species in a co-culture of Caco-2 cells and peripheral blood mononuclear cells. Archives of Toxicology, 2015, 89, 555-564.	1.9	14
74	In vitro evaluation of dietary compounds to reduce mercury bioavailability. Food Chemistry, 2018, 248, 353-359.	4.2	14
75	Dietary Compounds To Reduce In Vivo Inorganic Arsenic Bioavailability. Journal of Agricultural and Food Chemistry, 2019, 67, 9032-9038.	2.4	14
76	In Vitro Reduction of Arsenic Bioavailability Using Dietary Strategies. Journal of Agricultural and Food Chemistry, 2017, 65, 3956-3964.	2.4	13
77	Effect of lactic acid bacteria on mercury toxicokinetics. Food and Chemical Toxicology, 2019, 128, 147-153.	1.8	12
78	Glutathione-enriched baker's yeast: production, bioaccessibility and intestinal transport assays. Journal of Applied Microbiology, 2014, 116, 304-313.	1.4	11
79	Effect of chronic exposure to inorganic arsenic on intestinal cells. Journal of Applied Toxicology, 2019, 39, 899-907.	1.4	10
80	Arsenic speciation in cooked food and its bioaccessible fraction using X-ray absorption spectroscopy. Food Chemistry, 2021, 336, 127587.	4.2	9
81	Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food and Chemical Toxicology, 2022, 166, 113224.	1.8	9
82	Distribution of arsenic species in the freshwater crustaceanProcambarus clarkii. Applied Organometallic Chemistry, 2002, 16, 692-700.	1.7	8
83	Participation of b ^{0,+} and B ^{0,+} systems in the transport of mercury bound to cysteine in intestinal cells. Toxicology Research, 2015, 4, 895-900.	0.9	8
84	Evaluation of exposure to fluoride in child population of North Argentina. Environmental Science and Pollution Research, 2017, 24, 22040-22047.	2.7	7
85	In vitro evaluation of the efficacy of lactobacilli and yeasts in reducing bioavailability of inorganic arsenic. LWT - Food Science and Technology, 2020, 126, 109272.	2.5	6
86	Arsenic in Tissues and Prey Species of the Scalloped Hammerhead (Sphyrna lewini) from the SE Gulf of California. Archives of Environmental Contamination and Toxicology, 2021, 80, 624-633.	2.1	5
87	Evaluation of methylmercury cytotoxicity at intestinal level. Toxicology Letters, 2006, 164, S162.	0.4	0
88	Preface: 2nd International Congress, As 2008: Arsenic from nature to humans (Valencia, Spain, May) Tj ETQq	0 0 0 rgBT /C	verlock 10 Tf

89Study of intestinal transport of F using Caco-2 cell line. Toxicology Letters, 2010, 196, S306.0.40