Femke Heindryckx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347403/publications.pdf

Version: 2024-02-01

39 papers

2,195 citations

331259 21 h-index 35 g-index

43 all docs 43 docs citations

times ranked

43

4211 citing authors

#	Article	IF	CITATIONS
1	Targeting ER stress in the hepatic tumor microenvironment. FEBS Journal, 2022, 289, 7163-7176.	2.2	23
2	Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells, 2022, 11, 632.	1.8	30
3	Anthracyclins Increase PUFAs: Potential Implications in ER Stress and Cell Death. Cells, 2021, 10, 1163.	1.8	10
4	Exploring the Role of Endoplasmic Reticulum Stress in Hepatocellular Carcinoma through mining of the Human Protein Atlas. Biology, 2021, 10, 640.	1.3	15
5	In Vitro Cell Toxicity and Intracellular Uptake of Doxorubicin Exposed as a Solution or Liposomes: Implications for Treatment of Hepatocellular Carcinoma. Cells, 2021, 10, 1717.	1.8	25
6	Activated platelets contribute to the progression of hepatocellular carcinoma by altering the tumor environment. Life Sciences, 2021, 277, 119612.	2.0	14
7	Limitations and Possibilities of Transarterial Chemotherapeutic Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 13051.	1.8	14
8	Inhibiting P2Y12 in Macrophages Induces Endoplasmic Reticulum Stress and Promotes an Anti-Tumoral Phenotype. International Journal of Molecular Sciences, 2020, 21, 8177.	1.8	17
9	Fibrin fragment E potentiates TGF- \hat{l}^2 -induced myofibroblast activation and recruitment. Cellular Signalling, 2020, 72, 109661.	1.7	10
10	A Biomimetic Model for Liver Cancer to Study Tumor-Stroma Interactions in a 3D Environment with Tunable Bio-Physical Properties. Journal of Visualized Experiments, 2020, , .	0.2	14
11	Inhibiting IRE1 \hat{i} ±-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. ELife, 2020, 9, .	2.8	27
12	Blocking IRE1a-endoribonuclease activity in hepatic stellate cells decreases tumor cell proliferation and metastasis in hepatocellular carcinoma. Journal of Hepatology, 2020, 73, S636.	1.8	0
13	Platelets as Key Factors in Hepatocellular Carcinoma. Cancers, 2019, 11, 1022.	1.7	59
14	Liver Cancer Cell Lines Treated with Doxorubicin under Normoxia and Hypoxia: Cell Viability and Oncologic Protein Profile. Cancers, 2019, 11, 1024.	1.7	41
15	Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biology, 2018, 68-69, 589-601.	1.5	42
16	Activated platelets contribute to the progression of hepatocellular carcinoma by altering the immune cell environment. Journal of Hepatology, 2018, 68, S671-S672.	1.8	0
17	Endoplasmic reticulum stress in hepatic stellate cells contributes to the progression of hepatocellular carcinoma. Journal of Hepatology, 2018, 68, S93.	1.8	O
18	Endoplasmic reticulum stress enhances fibrosis through <scp>IRE</scp> 1αâ€mediated degradation of miRâ€150 and <scp>XBP</scp> â€1 splicing. EMBO Molecular Medicine, 2016, 8, 729-744.	3.3	122

#	Article	lF	Citations
19	Macrophage Depletion Attenuates Extracellular Matrix Deposition and Ductular Reaction in a Mouse Model of Chronic Cholangiopathies. PLoS ONE, 2016, 11, e0162286.	1.1	25
20	Time-Dependent Effect of Hypoxia on Tumor Progression and Liver Progenitor Cell Markers in Primary Liver Tumors. PLoS ONE, 2015, 10, e0119555.	1.1	12
21	P0280: Effect of extracellular matrix on cancer stem cells. Journal of Hepatology, 2015, 62, S412.	1.8	0
22	Hepatitis mouse models: from acuteâ€toâ€chronic autoimmune hepatitis. International Journal of Experimental Pathology, 2014, 95, 309-320.	0.6	22
23	The roles of transforming growth factor-β, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours. International Journal of Oncology, 2014, 44, 1015-1022.	1.4	43
24	Targeting the tumor stroma in hepatocellular carcinoma. World Journal of Hepatology, 2014, 7, 165.	0.8	66
25	The placental growth factor as a target against hepatocellular carcinoma in a diethylnitrosamine-induced mouse model. Journal of Hepatology, 2013, 58, 319-328.	1.8	26
26	The need for transparency and good practices in the qPCR literature. Nature Methods, 2013, 10, 1063-1067.	9.0	251
27	Serum protein N-glycan alterations of diethylnitrosamine-induced hepatocellular carcinoma mice and their evolution after inhibition of the placental growth factor. Molecular and Cellular Biochemistry, 2013, 372, 199-210.	1.4	8
28	New therapeutic targets in veterinary oncology: Man and dog definitely are best friends. Veterinary Journal, 2013, 195, 6-7.	0.6	11
29	Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models. Hepatology, 2013, 57, 1793-1805.	3.6	74
30	MicroRNA-24 Suppression of N-Deacetylase/N-Sulfotransferase-1 (NDST1) Reduces Endothelial Cell Responsiveness to Vascular Endothelial Growth Factor A (VEGFA). Journal of Biological Chemistry, 2013, 288, 25956-25963.	1.6	28
31	The paradox of the unfolded protein response in cancer. Anticancer Research, 2013, 33, 4683-94.	0.5	132
32	Inhibition of the placental growth factor decreases burden of cholangiocarcinoma and hepatocellular carcinoma in a transgenic mouse model. European Journal of Gastroenterology and Hepatology, 2012, 24, 1020-1032.	0.8	15
33	Effect of prolyl hydroxylase domain-2 haplodeficiency on the hepatocarcinogenesis in mice. Journal of Hepatology, 2012, 57, 61-68.	1.8	21
34	Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine, 2012, 59, 442-449.	1.4	100
35	Angiogenesis in chronic liver disease and its complications. Liver International, 2011, 31, 146-162.	1.9	226
36	Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology, 2011, 53, 1629-1640.	3 . 6	78

#	Article	IF	CITATIONS
37	Kinetics of angiogenic changes in a new mouse model for hepatocellular carcinoma. Molecular Cancer, 2010, 9, 219.	7.9	36
38	Further Pharmacological and Genetic Evidence for the Efficacy of PIGF Inhibition in Cancer and Eye Disease. Cell, 2010, 141, 178-190.	13.5	243
39	Experimental mouse models for hepatocellular carcinoma research. International Journal of Experimental Pathology, 2009, 90, 367-386.	0.6	314