
Bisei Ohkawara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meclozine ameliorates skeletal muscle pathology and increases muscle forces in mdx mice. Biochemical and Biophysical Research Communications, 2022, 592, 87-92.	2.1	0
2	Promethazine Downregulates Wnt/β-Catenin Signaling and Increases the Biomechanical Forces of the Injured Achilles Tendon in the Early Stage of Healing. American Journal of Sports Medicine, 2022, 50, 1317-1327.	4.2	2
3	Possible Repositioning of an Oral Anti-Osteoporotic Drug, Ipriflavone, for Treatment of Inflammatory Arthritis via Inhibitory Activity of KIAA1199, a Novel Potent Hyaluronidase. International Journal of Molecular Sciences, 2022, 23, 4089.	4.1	3
4	Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. International Journal of Molecular Sciences, 2021, 22, 2455.	4.1	20
5	Zonisamide upregulates neuregulin-1 expression and enhances acetylcholine receptor clustering at the in vitro neuromuscular junction. Neuropharmacology, 2021, 195, 108637.	4.1	2
6	Regulated splicing of large exons is linked to phaseâ€ s eparation of vertebrate transcription factors. EMBO Journal, 2021, 40, e107485.	7.8	8
7	Gene Expression Profile at the Motor Endplate of the Neuromuscular Junction of Fast-Twitch Muscle. Frontiers in Molecular Neuroscience, 2020, 13, 154.	2.9	12
8	Zonisamide ameliorates neuropathic pain partly by suppressing microglial activation in the spinal cord in a mouse model. Life Sciences, 2020, 263, 118577.	4.3	7
9	Zonisamide ameliorates progression of cervical spondylotic myelopathy in a rat model. Scientific Reports, 2020, 10, 13138.	3.3	10
10	tRIPâ€seq reveals repression of premature polyadenylation by coâ€transcriptional FUSâ€U1 snRNP assembly. EMBO Reports, 2020, 21, e49890.	4.5	18
11	Inhibition of cyclooxygenase-1 by nonsteroidal anti-inflammatory drugs demethylates MeR2 enhancer and promotes Mbnl1 transcription in myogenic cells. Scientific Reports, 2020, 10, 2558.	3.3	12
12	Congenital myasthenic syndrome–associated agrin variants affect clustering of acetylcholine receptors in a domain-specific manner. JCI Insight, 2020, 5, .	5.0	15
13	CTGF/CCN2 facilitates LRP4â€mediated formation of the embryonic neuromuscular junction. EMBO Reports, 2020, 21, e48462.	4.5	15
14	Mianserin suppresses R-spondin 2-induced activation of Wnt/β-catenin signaling in chondrocytes and prevents cartilage degradation in a rat model of osteoarthritis. Scientific Reports, 2019, 9, 2808.	3.3	19
15	Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Scientific Reports, 2018, 8, 434.	3.3	12
16	Differential effects of spinal motor neuron-derived and skeletal muscle-derived Rspo2 on acetylcholine receptor clustering at the neuromuscular junction. Scientific Reports, 2018, 8, 13577.	3.3	11
17	Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opinion on Therapeutic Targets, 2017, 21, 949-958.	3.4	44
18	SRSF1 suppresses selection of intron-distal 5′ splice site of DOK7 intron 4 to generate functional full-length Dok-7 protein. Scientific Reports, 2017, 7, 10446.	3.3	4

BISEI OHKAWARA

#	Article	IF	CITATIONS
19	Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis. Bone, 2017, 105, 42-49.	2.9	14
20	Wnt/β-catenin signaling suppresses expressions of Scx, Mkx, and Tnmd in tendon-derived cells. PLoS ONE, 2017, 12, e0182051.	2.5	44
21	Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS ONE, 2017, 12, e0184388.	2.5	27
22	R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification. Biochemical and Biophysical Research Communications, 2016, 473, 255-264.	2.1	31
23	Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Research, 2016, 45, gkw823.	14.5	53
24	Recent advances in congenital myasthenic syndromes. Clinical and Experimental Neuroimmunology, 2016, 7, 246-259.	1.0	9
25	Molecular hydrogen suppresses activated Wnt/β-catenin signaling. Scientific Reports, 2016, 6, 31986.	3.3	20
26	R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Scientific Reports, 2016, 6, 28512.	3.3	24
27	Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Scientific Reports, 2016, 6, 25317.	3.3	29
28	Tranilast stimulates endochondral ossification by upregulating SOX9 and RUNX2 promoters. Biochemical and Biophysical Research Communications, 2016, 470, 356-361.	2.1	8
29	Repositioning again of zonisamide for nerve regeneration. Neural Regeneration Research, 2016, 11, 541.	3.0	5
30	Collagen Q and anti-MuSK autoantibody competitively suppress agrin/LRP4/MuSK signaling. Scientific Reports, 2015, 5, 13928.	3.3	54
31	Lansoprazole Upregulates Polyubiquitination of the TNF Receptor-Associated Factor 6 and Facilitates Runx2-mediated Osteoblastogenesis. EBioMedicine, 2015, 2, 2046-2061.	6.1	15
32	Zonisamide Enhances Neurite Elongation of Primary Motor Neurons and Facilitates Peripheral Nerve Regeneration In Vitro and in a Mouse Model. PLoS ONE, 2015, 10, e0142786.	2.5	28
33	Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes and Development, 2015, 29, 1045-1057.	5.9	98
34	A missense mutation in domain III in HSPG2 in Schwartz–Jampel syndrome compromises secretion of perlecan into the extracellular space. Neuromuscular Disorders, 2015, 25, 667-671.	0.6	18
35	Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4-Related Myasthenia. JAMA Neurology, 2015, 72, 889.	9.0	41
36	Congenital myasthenic syndrome in Japan: Ethnically unique mutations in muscle nicotinic acetylcholine receptor subunits. Neuromuscular Disorders, 2015, 25, 60-69.	0.6	18

BISEI OHKAWARA

#	Article	IF	CITATIONS
37	Meclozine Promotes Longitudinal Skeletal Growth in Transgenic Mice with Achondroplasia Carrying a Gain-of-Function Mutation in the FGFR3 Gene. Endocrinology, 2015, 156, 548-554.	2.8	44
38	Verapamil Protects against Cartilage Degradation in Osteoarthritis by Inhibiting Wnt/β-Catenin Signaling. PLoS ONE, 2014, 9, e92699.	2.5	67
39	LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Human Molecular Genetics, 2014, 23, 1856-1868.	2.9	96
40	LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation. Biochemical and Biophysical Research Communications, 2014, 451, 302-307.	2.1	25
41	RNA Helicase DDX3 Is a Regulatory Subunit of Casein Kinase 1 in Wnt–β-Catenin Signaling. Science, 2013, 339, 1436-1441.	12.6	176
42	Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia. PLoS ONE, 2013, 8, e81569.	2.5	46
43	Rspo3 Binds Syndecan 4 and Induces Wnt/PCP Signaling via Clathrin-Mediated Endocytosis to Promote Morphogenesis. Developmental Cell, 2011, 20, 303-314.	7.0	200
44	An ATF2â€based luciferase reporter to monitor non anonical Wnt signaling in <i>xenopus</i> embryos. Developmental Dynamics, 2011, 240, 188-194.	1.8	63
45	Wnt/Frizzled Signaling Requires dPRR, the Drosophila Homolog of the Prorenin Receptor. Current Biology, 2010, 20, 1263-1268.	3.9	115
46	Requirement of Prorenin Receptor and Vacuolar H ⁺ -ATPase–Mediated Acidification for Wnt Signaling. Science, 2010, 327, 459-463.	12.6	514
47	The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. Development (Cambridge), 2008, 135, 3655-3664.	2.5	135
48	NARF, an Nemo-like Kinase (NLK)-associated Ring Finger Protein Regulates the Ubiquitylation and Degradation of T Cell Factor/Lymphoid Enhancer Factor (TCF/LEF). Journal of Biological Chemistry, 2006, 281, 20749-20760.	3.4	118
49	Role of the TAK1-NLK-STAT3 pathway in TGF-Â-mediated mesoderm induction. Genes and Development, 2004, 18, 381-386.	5.9	96
50	Role of a BCL9-Related β-Catenin-Binding Protein, B9L, in Tumorigenesis Induced by Aberrant Activation of Wnt Signaling. Cancer Research, 2004, 64, 8496-8501.	0.9	87
51	Manipulation of Alternative Splicing by a Newly Developed Inhibitor of Clks. Journal of Biological Chemistry, 2004, 279, 24246-24254.	3.4	257
52	Characterization of a multipotent neural progenitor cell line cloned from an adult p53â^'/â^' mouse cerebellum. Brain Research, 2003, 959, 11-19.	2.2	6
53	Negative regulation of Wnt signalling by HMG2L1, a novel NLK-binding protein. Genes To Cells, 2003, 8, 677-684.	1.2	30
54	Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development (Cambridge), 2003, 130, 2129-2138.	2.5	166

#	Article	IF	CITATIONS
55	Action Range of BMP Is Defined by Its N-Terminal Basic Amino Acid Core. Current Biology, 2002, 12, 205-209.	3.9	162