List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347211/publications.pdf Version: 2024-02-01

LEILEL CHEN

#	Article	IF	CITATIONS
1	p53-NEIL1 co-abnormalities induce genomic instability and promote synthetic lethality with Chk1 inhibition in multiple myeloma having concomitant 17p13(del) and 1q21(gain). Oncogene, 2022, 41, 2106-2121.	5.9	3
2	ADARs act as potent regulators of circular transcriptome in cancer. Nature Communications, 2022, 13, 1508.	12.8	29
3	Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer. Nature Communications, 2022, 13, 1793.	12.8	9
4	Pan-cancer pervasive upregulation of 3′ UTR splicing drives tumourigenesis. Nature Cell Biology, 2022, 24, 928-939.	10.3	18
5	RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. Journal of Hepatology, 2021, 74, 135-147.	3.7	41
6	MNK1 and MNK2 enforce expression of E2F1, FOXM1, and WEE1 to drive soft tissue sarcoma. Oncogene, 2021, 40, 1851-1867.	5.9	11
7	"3C―Trial: An RNA Editing Signature to Guide Gastric Cancer Chemotherapy. Cancer Research, 2021, 81, 2788-2798.	0.9	9
8	Targeting RNA editing of antizyme inhibitor 1: A potential oligonucleotide-based antisense therapy for cancer. Molecular Therapy, 2021, 29, 3258-3273.	8.2	13
9	The Potential Use of RNA-based Therapeutics for Breast Cancer Treatment. Current Medicinal Chemistry, 2021, 28, 5110-5136.	2.4	5
10	Profiling of 3D Genome Organization in Nasopharyngeal Cancer Needle Biopsy Patient Samples by a Modified Hi-C Approach. Frontiers in Genetics, 2021, 12, 673530.	2.3	4
11	Pseudogene-mediated DNA demethylation leads to oncogene activation. Science Advances, 2021, 7, eabg1695.	10.3	12
12	CSI NGS Portal: An Online Platform for Automated NGS Data Analysis and Sharing. International Journal of Molecular Sciences, 2020, 21, 3828.	4.1	19
13	Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. Science Advances, 2020, 6, eaba5136.	10.3	29
14	Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nature Communications, 2020, 11, 799.	12.8	69
15	CAV1 - GLUT3 signaling is important for cellular energy and can be targeted by Atorvastatin in Non-Small Cell Lung Cancer. Theranostics, 2019, 9, 6157-6174.	10.0	32
16	Systematic evaluation and optimization of the experimental steps in RNA G-quadruplex structure sequencing. Scientific Reports, 2019, 9, 8091.	3.3	13
17	Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated nonâ€small cell lung cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	109
18	Overexpression of MUC13, a Poor Prognostic Predictor, Promotes Cell Growth by Activating Wnt Signaling in Hepatocellular Carcinoma. American Journal of Pathology, 2018, 188, 378-391.	3.8	34

#	Article	IF	CITATIONS
19	ApoA-1 accelerates regeneration of small-for-size fatty liver graft after transplantation. Life Sciences, 2018, 215, 128-135.	4.3	12
20	Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Research, 2018, 46, 7953-7969.	14.5	41
21	Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood, 2018, 132, 1304-1317.	1.4	67
22	AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight, 2018, 3, .	5.0	91
23	An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Research, 2017, 45, 10436-10451.	14.5	50
24	AKR7A3 suppresses tumorigenicity and chemoresistance in hepatocellular carcinoma through attenuation of ERK, c-Jun and NF-κB signaling pathways. Oncotarget, 2017, 8, 83469-83479.	1.8	24
25	ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer. Gastroenterology, 2016, 151, 637-650.e10.	1.3	127
26	CHD1L promotes lineage reversion of hepatocellular carcinoma through opening chromatin for key developmental transcription factors. Hepatology, 2016, 63, 1544-1559.	7.3	32
27	Loss of ATOH8 Increases Stem Cell Features of Hepatocellular Carcinoma Cells. Gastroenterology, 2015, 149, 1068-1081.e5.	1.3	50
28	Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing. Bioscience Reports, 2015, 35, .	2.4	11
29	Overexpression of N-terminal kinase like gene promotes tumorigenicity of hepatocellular carcinoma by regulating cell cycle progression and cell motility. Oncotarget, 2015, 6, 1618-1630.	1.8	10
30	ADAR1: a promising new biomarker for esophageal squamous cell carcinoma?. Expert Review of Anticancer Therapy, 2014, 14, 865-868.	2.4	13
31	Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma. Cancer Research, 2014, 74, 840-851.	0.9	152
32	A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut, 2014, 63, 832-843.	12.1	187
33	RNA Editome Imbalance in Hepatocellular Carcinoma. Cancer Research, 2014, 74, 1301-1306.	0.9	47
34	Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3β/Snail signaling. Hepatology, 2014, 59, 531-543.	7.3	110
35	Allele-Specific Imbalance of Oxidative Stress-Induced Growth Inhibitor 1 Associates With Progression of Hepatocellular Carcinoma. Gastroenterology, 2014, 146, 1084-1096.e5.	1.3	33
36	Hepatocellular carcinoma: Transcriptome diversity regulated by RNA editing. International Journal of Biochemistry and Cell Biology, 2013, 45, 1843-1848.	2.8	17

#	Article	IF	CITATIONS
37	Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 2013, 436, 711-718.	2.1	61
38	SPOCK1 Is Regulated by CHD1L and Blocks Apoptosis and Promotes HCC Cell Invasiveness and Metastasis in Mice. Gastroenterology, 2013, 144, 179-191.e4.	1.3	94
39	Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nature Medicine, 2013, 19, 209-216.	30.7	421
40	Characterization of <i>CACNA2D3</i> as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. International Journal of Cancer, 2013, 133, 2284-2295.	5.1	42
41	Downregulation of the Novel Tumor Suppressor DIRAS1 Predicts Poor Prognosis in Esophageal Squamous Cell Carcinoma. Cancer Research, 2013, 73, 2298-2309.	0.9	50
42	Establishment and characterization of human non-small cell lung cancer cell lines. Molecular Medicine Reports, 2012, 5, 114-7.	2.4	9
43	SCYL1 binding protein 1 promotes the ubiquitin-dependent degradation of Pirh2 and has tumor-suppressive function in the development of hepatocellular carcinoma. Carcinogenesis, 2012, 33, 1581-1588.	2.8	13
44	Role of Translationally Controlled Tumor Protein in Cancer Progression. Biochemistry Research International, 2012, 2012, 1-5.	3.3	31
45	MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut, 2012, 61, 33-42.	12.1	223
46	Interleukin 23 Promotes Hepatocellular Carcinoma Metastasis via NF-Kappa B Induced Matrix Metalloproteinase 9 Expression. PLoS ONE, 2012, 7, e46264.	2.5	68
47	Serum and glucocorticoid kinase 3 at 8q13.1 promotes cell proliferation and survival in hepatocellular carcinoma. Hepatology, 2012, 55, 1754-1765.	7.3	41
48	Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology, 2012, 55, 491-505.	7.3	71
49	Chemically-Induced Cancers Do Not Originate from Bone Marrow-Derived Cells. PLoS ONE, 2012, 7, e30493.	2.5	3
50	Spatholobus suberectus inhibits cancer cell growth by inducing apoptosis and arresting cell cycle at G2/M checkpoint. Journal of Ethnopharmacology, 2011, 133, 751-758.	4.1	45
51	Interleukin 17A Promotes Hepatocellular Carcinoma Metastasis via NF-kB Induced Matrix Metalloproteinases 2 and 9 Expression. PLoS ONE, 2011, 6, e21816.	2.5	168
52	Overexpression of Cathepsin Z Contributes to Tumor Metastasis by Inducing Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. PLoS ONE, 2011, 6, e24967.	2.5	79
53	Overexpression of elF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability. BMC Cancer, 2011, 11, 199.	2.6	17
54	Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma. BMC Cancer, 2011, 11, 86.	2.6	30

#	Article	IF	CITATIONS
55	Clinical significance of CHD1L in hepatocellular carcinoma and therapeutic potentials of virus-mediated CHD1L depletion. Gut, 2011, 60, 534-543.	12.1	46
56	Downregulation of RBMS3 Is Associated with Poor Prognosis in Esophageal Squamous Cell Carcinoma. Cancer Research, 2011, 71, 6106-6115.	0.9	47
57	Characterization of Tumor-Suppressive Function of <i>SOX6</i> in Human Esophageal Squamous Cell Carcinoma. Clinical Cancer Research, 2011, 17, 46-55.	7.0	73
58	Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology, 2010, 51, 1255-1263.	7.3	138
59	Down-regulation of tyrosine aminotransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma. Hepatology, 2010, 51, 1624-1634.	7.3	48
60	Characterization of a Novel Mechanism of Genomic Instability Involving the SEI1/SET/NM23H1 Pathway in Esophageal Cancers. Cancer Research, 2010, 70, 5695-5705.	0.9	31
61	Characterization of a Candidate Tumor Suppressor Gene Uroplakin 1A in Esophageal Squamous Cell Carcinoma. Cancer Research, 2010, 70, 8832-8841.	0.9	39
62	Chromosome 1q21 amplification and oncogenes in hepatocellular carcinoma. Acta Pharmacologica Sinica, 2010, 31, 1165-1171.	6.1	45
63	CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. Journal of Clinical Investigation, 2010, 120, 1178-1191.	8.2	132
64	Chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like (CHD1l) gene suppresses the nucleus-to-mitochondria translocation of nur77 to sustain hepatocellular carcinoma cell survival. Hepatology, 2009, 50, 122-129.	7.3	61
65	Flow cytometric assay of phosphotyrosine levels in Bcr-Abl-positive chronic myelogenous leukemias: a potential prognostic marker. Annals of Hematology, 2009, 88, 29-36.	1.8	1
66	Transgenic CHD1L Expression in Mouse Induces Spontaneous Tumors. PLoS ONE, 2009, 4, e6727.	2.5	47
67	Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology, 2008, 47, 503-510.	7.3	128