Katia Gysling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3347019/publications.pdf

Version: 2024-02-01

257101 223531 2,493 72 24 46 h-index citations g-index papers 72 72 72 2788 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Reactive oxygen species modulate locomotor activity and dopamine extracellular levels induced by amphetamine in rats. Behavioural Brain Research, 2022, 427, 113857.	1.2	3
2	Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addiction Biology, 2021, 26, e13017.	1.4	6
3	Social isolation of adolescent male rats increases anxiety and K ⁺ â€induced dopamine release in the nucleus accumbens: Role of CRFâ€R1. European Journal of Neuroscience, 2021, 54, 4888-4905.	1.2	12
4	Inhibitory Control of Basolateral Amygdalar Transmission to the Prefrontal Cortex by Local Corticotrophin Type 2 Receptor. International Journal of Neuropsychopharmacology, 2020, 23, 108-116.	1.0	10
5	Crossâ€talk between dopamine D1 and corticotropin releasing factor type 2 receptors leads to occlusion of their ERK1/2 signaling. Journal of Neurochemistry, 2020, 155, 264-273.	2.1	7
6	Type 2Î ² Corticotrophin Releasing Factor Receptor Forms a Heteromeric Complex With Dopamine D1 Receptor in Living Cells. Frontiers in Pharmacology, 2020, 10, 1501.	1.6	3
7	Cocaine Blocks Effects of Hunger Hormone, Ghrelin, Via Interaction with Neuronal Sigma-1 Receptors. Molecular Neurobiology, 2019, 56, 1196-1210.	1.9	13
8	Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin OX1 receptor and the CRF2-OX1 heteroreceptor complex. Neuropharmacology, 2019, 152, 102-111.	2.0	11
9	Lateral septum stimulation disinhibits dopaminergic neurons in the antero-ventral region of the ventral tegmental area: Role of GABA-A alpha 1 receptors. Neuropharmacology, 2018, 128, 76-85.	2.0	34
10	Molecular Modeling of Structures and Interaction of Human Corticotropin-Releasing Factor (CRF) Binding Protein and CRF Type-2 Receptor. Frontiers in Endocrinology, 2018, 9, 43.	1.5	5
11	Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression. Frontiers in Molecular Neuroscience, 2018, 11, 17.	1.4	17
12	Activation of type 4 dopaminergic receptors in the prelimbic area of medial prefrontal cortex is necessary for the expression of innate fear behavior. Behavioural Brain Research, 2017, 324, 130-137.	1,2	5
13	Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. International Journal of Neuropsychopharmacology, 2017, 20, 660-669.	1.0	18
14	The activation of metabotropic glutamate 5 receptors in the rat ventral tegmental area increases dopamine extracellular levels. NeuroReport, 2017, 28, 28-34.	0.6	10
15	Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cellular and Molecular Life Sciences, 2016, 73, 3583-3597.	2.4	34
16	CRF binding protein facilitates the presence of CRF type $2\hat{l}_{\pm}$ receptor on the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4075-4080.	3.3	44
17	Opposite effects of acute and chronic amphetamine on Nurr1 and NF-κB p65 in the rat ventral tegmental area. Brain Research, 2016, 1652, 14-20.	1.1	5
18	Corticotropin-Releasing Factor Receptors and Their Interacting Proteins: Functional Consequences. Molecular Pharmacology, 2016, 90, 627-632.	1.0	18

#	Article	IF	CITATIONS
19	Corticotropinâ€releasing factor typeâ€2 receptor and corticotropinâ€releasing factorâ€binding protein coexist in rat ventral tegmental area nerve terminals originated in the lateral hypothalamic area. European Journal of Neuroscience, 2016, 43, 220-229.	1.2	28
20	Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpiroleâ€sensitized rats hints at inhibitory D2 autoreceptor function. Journal of Neurochemistry, 2015, 134, 1081-1090.	2.1	23
21	A IncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nature Structural and Molecular Biology, 2015, 22, 370-376.	3.6	229
22	Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area. Pharmacological Research, 2015, 101, 116-123.	3.1	15
23	A comprehensive survey of non-canonical splice sites in the human transcriptome. Nucleic Acids Research, 2014, 42, 10564-10578.	6.5	109
24	Withdrawal from chronic amphetamine reduces dopamine transmission in the rat lateral septum. Journal of Neuroscience Research, 2014, 92, 937-943.	1.3	7
25	EphA4 Activation of c-Abl Mediates Synaptic Loss and LTP Blockade Caused by Amyloid- \hat{l}^2 Oligomers. PLoS ONE, 2014, 9, e92309.	1.1	75
26	Varenicline and cytisine: two nicotinic acetylcholine receptor ligands reduce ethanol intake in University of Chile bibulous rats. Psychopharmacology, 2013, 227, 287-298.	1.5	31
27	Long-term loss of dopamine release mediated by CRF-1 receptors in the rat lateral septum after repeated cocaine administration. Behavioural Brain Research, 2013, 250, 206-210.	1.2	8
28	Nur transcription factors in stress and addiction. Frontiers in Molecular Neuroscience, 2013, 6, 44.	1.4	64
29	An Amphipathic Alpha-Helix in the Prodomain of Cocaine and Amphetamine Regulated Transcript Peptide Precursor Serves as Its Sorting Signal to the Regulated Secretory Pathway. PLoS ONE, 2013, 8, e59695.	1.1	5
30	Strengthening Efforts to Integrate Mental Health into Primary Health Care in Chile. International Journal of Mental Health, 2012, 41, 87-102.	0.5	3
31	4â€Methylthioamphetamine Increases Dopamine in the Rat Striatum and has Rewarding Effects <i>In Vivo</i> . Basic and Clinical Pharmacology and Toxicology, 2012, 111, 371-379.	1.2	12
32	Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behaviour. Biochemical Pharmacology, 2012, 83, 1-5.	2.0	19
33	Corticotropin-releasing factor binding protein enters the regulated secretory pathway in neuroendocrine cells and cortical neurons. Neuropeptides, 2011, 45, 273-279.	0.9	14
34	Repeated Immobilization Stress Increases Nur77 Expression in the Bed Nucleus of the Stria Terminalis. Neurotoxicity Research, 2011, 20, 289-300.	1.3	10
35	Repeated treatment with the \hat{I}^{e} -opioid agonist U-69593 increases K+-stimulated dopamine release in the rat medial prefrontal cortex. Synapse, 2010, 64, 898-904.	0.6	6
36	Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. Journal of Neurochemistry, 2010, 114, 1158-1167.	2.1	43

#	Article	IF	CITATIONS
37	Activation of GABAâ€B receptors induced by systemic amphetamine abolishes dopamine release in the rat lateral septum. Journal of Neurochemistry, 2010, 114, 1678-1686.	2.1	25
38	<i>N</i> , <i>N</i> ,â€dimethylâ€thioamphetamine and methylâ€thioamphetamine, two nonâ€neurotoxic substrates of 5â€HT transporters, have scant ⟨i⟩in vitro⟨/i⟩ efficacy for the induction of transporterâ€mediated 5â€HT release and currents. Journal of Neurochemistry, 2008, 105, 1770-1780.	2.1	19
39	Increased locomotor response to amphetamine induced by the repeated administration of the selective kappa-opioid receptor agonist U-69593. Synapse, 2007, 61, 771-777.	0.6	17
40	Repeated administration of the selective kappa-opioid receptor agonist U-69593 increases stimulated dopamine extracellular levels in the rat nucleus accumbens. Journal of Neuroscience Research, 2006, 84, 450-459.	1.3	43
41	Desipramine prevents the sustained increase in corticotropin-releasing hormone-like immunoreactivity induced by repeated immobilization stress in the rat central extended amygdala. Journal of Neuroscience Research, 2006, 84, 1270-1281.	1.3	25
42	Estrogen Receptors \hat{A} and beta Differentially Regulate the Transcriptional Activity of the Urocortin Gene. Journal of Neuroscience, 2006, 26, 4908-4916.	1.7	37
43	Acute morphine administration increases extracellular DA levels in the rat lateral septum by decreasing the GABAergic inhibitory tone in the ventral tegmental area. Journal of Neuroscience Research, 2005, 81, 132-139.	1.3	40
44	Adrenalectomy decreases corticotropin-releasing hormone gene expression and increases noradrenaline and dopamine extracellular levels in the rat lateral bed nucleus of the stria terminalis. Journal of Neuroscience Research, 2005, 81, 140-152.	1.3	22
45	Natural expression of immature Ucn antisense RNA in the rat brain. Evidence favoring bidirectional transcription of the Ucn gene locus. Molecular Brain Research, 2005, 139, 115-128.	2.5	14
46	Corticotropin-releasing hormone and urocortin: redundant or distinctive functions?. Brain Research Reviews, 2004, 47, 116-125.	9.1	63
47	Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic–pituitary–adrenal axis. Brain Research Reviews, 2004, 47, 145-160.	9.1	162
48	Modulation of dendritic release of dopamine by metabotropic glutamate receptors in rat substantia nigra. Biochemical Pharmacology, 2002, 63, 1343-1352.	2.0	20
49	Chronic Morphine Treatment and Withdrawal Increase Extracellular Levels of Norepinephrine in the Rat Bed Nucleus of the Stria Terminalis. Journal of Neurochemistry, 2002, 75, 741-748.	2.1	70
50	Noradrenaline inhibits glutamate release in the rat bed nucleus of the stria terminalis: In vivo microdialysis studies., 1999, 55, 311-320.		59
51	Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Research Bulletin, 1999, 49, 209-214.	1.4	23
52	Differential regulation of dopamine release by N-methyl-d-aspartate receptors in rat striatum after partial and extreme lesions of the nigro-striatal pathway. Brain Research, 1998, 797, 255-266.	1.1	11
53	Regulation of norepinephrine release from the rat bed nucleus of the stria terminalis: In vivo microdialysis studies., 1997, 50, 1040-1046.		40
54	Release of endogenous catecholamines from the striatum and bed nucleus of stria terminalis evoked by potassium and N-methyl-D-aspartate: In vitro microdialysis studies. Journal of Neuroscience Research, 1995, 40, 89-98.	1.3	16

#	Article	IF	Citations
55	Changes in extracellular levels of glutamate and aspartate in rat substantia nigra induced by dopamine receptor ligands: In vivo microdialysis studies. Neurochemical Research, 1995, 20, 159-169.	1.6	48
56	Effects of in vitro ethanol and chronic ethanol consumption on the release of excitatory amino acids in the rat hippocampus. Brain Research, 1995, 674, 104-106.	1.1	16
57	Regulation of endogenous noradrenaline release from the bed nucleus of stria terminalis. Biochemical Pharmacology, 1995, 49, 687-692.	2.0	26
58	Studies of cholecystokinin in the rat bed nucleus of stria terminalis. Biochemical Pharmacology, 1993, 45, 2283-2288.	2.0	5
59	Regulation of [3H]norepinephrine release by N-methyl-D-aspartate receptors in minislices from the dentate gyrus and the CA1-CA3 area of the rat hippocampus. Biochemical Pharmacology, 1993, 46, 1983-1987.	2.0	33
60	Differential effects of haloperidol on negative symptoms in drug-naive schizophrenic patients: effects on plasma homovanillic acid. Schizophrenia Research, 1993, 9, 29-34.	1.1	13
61	Regulation of excitatory amino acid release by N-methyl-d-aspartate receptors in rat striatum: in vivo microdialysis studies. Brain Research, 1992, 585, 105-115.	1.1	105
62	N-Methyl-d-aspartate receptors and release of newly-synthesized [3H]dopamine in nucleus accumbens slices and its relationship with neocortical afferences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1991, 15, 663-676.	2.5	15
63	Effect of dopamine depletion upon the K+-evoked release of CCK from superfused striatal slices. Neuroscience Letters, 1990, 112, 313-317.	1.0	5
64	Lithium preincubation stimulates the potassium-induced release of cholecystokinin from slices of cerebral cortex and caudate-putamen incubated in vitro. Brain Research, 1987, 413, 365-367.	1.1	5
65	The regulation of cholecystokinin release from rat caudatoputamen in vitro. Brain Research, 1987, 407, 110-116.	1.1	19
66	The Subcellular Distribution of Peptide Histidine Isoleucine Amide-27-Like Peptides in Rat Brain and Their Release from Rat Cerebral Cortical Slices In Vitro. Journal of Neurochemistry, 1985, 44, 255-259.	2.1	13
67	Failure of chronic haloperidol treatment to alter levels of cholecystokinin in the rat brain striatum and olfactory tubercle-nucleus accumbens area. Neuropeptides, 1984, 4, 421-423.	0.9	14
68	Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 1983, 277, 119-127.	1.1	450
69	Uptake and release of manganese by rat striatal slices. Biochemical Pharmacology, 1981, 30, 1833-1837.	2.0	10
70	Regulation of transmitter synthesis and release in mesolimbic dopaminergic nerve terminals. Biochemical Pharmacology, 1981, 30, 2157-2164.	2.0	7
71	Effect of ethanol on dibutyryl cyclic adenosine monophosphate- and theophyllinc-induced stimulation of dopamine biosynthesis by rat striatal slices. Biochemical Pharmacology, 1977, 26, 559-562.	2.0	7
72	Effect of ethanol on dopamine synthesis and release from rat corpus striatum. Biochemical Pharmacology, 1976, 25, 157-162.	2.0	40