Klaus Sengstock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3346457/publications.pdf

Version: 2024-02-01

45 papers

4,869 citations

201674 27 h-index 233421 45 g-index

45 all docs

45 docs citations

45 times ranked

3205 citing authors

#	Article	IF	Citations
1	Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices. Science, 2011, 333, 996-999.	12.6	543
2	Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices. Physical Review Letters, 2012, 108, 225304.	7.8	523
3	Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science, 2016, 352, 1091-1094.	12.6	358
4	Dynamics ofF=2Spinor Bose-Einstein Condensates. Physical Review Letters, 2004, 92, 040402.	7.8	306
5	Non-Abelian Gauge Fields and Topological Insulators in Shaken Optical Lattices. Physical Review Letters, 2012, 109, 145301.	7.8	287
6	Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nature Physics, 2013, 9, 738-743.	16.7	286
7	Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Physics, 2011, 7, 434-440.	16.7	275
8	Observation of dynamical vortices after quenches in a system with topology. Nature Physics, 2018, 14, 265-268.	16.7	263
9	Ultracold quantum gases in triangular optical lattices. New Journal of Physics, 2010, 12, 065025.	2.9	184
10	Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nature Physics, 2010, 6, 56-61.	16.7	180
11	Physics with coherent matter waves. Reports on Progress in Physics, 2004, 67, 907-963.	20.1	153
12	Identifying quantum phase transitions using artificial neural networks on experimental data. Nature Physics, 2019, 15, 917-920.	16.7	150
13	Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices. Nature Physics, 2012, 8, 71-75.	16.7	144
14	Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice. Europhysics Letters, 2010, 89, 10010.	2.0	131
15	Measuring topology from dynamics by obtaining the Chern number from a linking number. Nature Communications, 2019, 10, 1728.	12.8	130
16	Engineering novel optical lattices. Reports on Progress in Physics, 2013, 76, 086401.	20.1	122
17	Measuring quantized circular dichroism in ultracold topological matter. Nature Physics, 2019, 15, 449-454.	16.7	106
18	Coherent multi-flavour spin dynamics in a fermionic quantum gas. Nature Physics, 2012, 8, 813-818.	16.7	68

#	Article	IF	CITATIONS
19	Multiphoton interband excitations of quantum gases in driven optical lattices. Physical Review A, 2015, 92, .	2.5	65
20	Multiband Spectroscopy of Ultracold Fermions: Observation of Reduced Tunneling in Attractive Bose-Fermi Mixtures. Physical Review Letters, 2011, 107, 135303.	7.8	58
21	Spin-orbit coupling in periodically driven optical lattices. Physical Review A, 2014, 90, .	2.5	54
22	Polarization-gradient cooling in a strong doughnut-mode dipole potential. Physical Review A, 1998, 58, 3068-3079.	2.5	52
23	Dynamics of ultracold quantum gases in the dissipative Fermi–Hubbard model. Quantum Science and Technology, 2019, 4, 014002.	5.8	51
24	Giant Spin Oscillations in an Ultracold Fermi Sea. Science, 2014, 343, 157-160.	12.6	46
25	Unsupervised machine learning of topological phase transitions from experimental data. Machine Learning: Science and Technology, 2021, 2, 035037.	5.0	41
26	Driving protocol for a Floquet topological phase without static counterpart. New Journal of Physics, 2017, 19, 113010.	2.9	32
27	Quantum phases in tunable state-dependent hexagonal optical lattices. Physical Review A, 2014, 90, .	2.5	28
28	Intrinsic Photoconductivity of Ultracold Fermions in Optical Lattices. Physical Review Letters, 2013, 110, 085302.	7.8	27
29	Observation of Topological Bloch-State Defects and Their Merging Transition. Physical Review Letters, 2017, 118, 240403.	7.8	26
30	Absolute strong-field ionization probabilities of ultracold rubidium atoms. Communications Physics, 2018, 1 , .	5.3	22
31	Breaking inversion symmetry in a state-dependent honeycomb lattice: artificial graphene with tunable band gap. 2D Materials, 2016, 3, 024005.	4.4	21
32	Engineering Spin Waves in a High-Spin Ultracold Fermi Gas. Physical Review Letters, 2013, 110, 250402.	7.8	20
33	High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice. Physical Review A, 2018, 97, .	2.5	15
34	Charge density wave and charge pump of interacting fermions in circularly shaken hexagonal optical lattices. Physical Review A, 2018, 98, .	2.5	15
35	Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems. Nature, 2021, 599, 571-575.	27.8	14
36	Topological proximity effects in a Haldane graphene bilayer system. Physical Review B, 2019, 100, .	3.2	12

#	Article	IF	CITATIONS
37	Relaxation Dynamics of an Isolated Large-Spin Fermi Gas Far from Equilibrium. Physical Review X, 2014, 4, .	8.9	10
38	Ultrafast electron cooling in an expanding ultracold plasma. Nature Communications, 2021, 12, 596.	12.8	10
39	Formation of Spontaneous Density-Wave Patterns in dc Driven Lattices. Physical Review X, 2022, 12, .	8.9	9
40	Interorbital interactions in an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SU</mml:mi><mml:mo>(<td>no≥&5nml:</td><td>mn§ 2</td></mml:mo></mml:mrow></mml:math>	no ≥&5 nml:	mn § 2
41	Investigation of Feshbach resonances in ultracold <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="bold">K</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>40</mml:mn></mml:mmultiscripts></mml:math> spin mixtures. Physical Review A. 2017, 95	2.5	7
42	Modified spin-wave theory and spin-liquid behavior of cold bosons on an inhomogeneous triangular lattice. Physical Review B, 2016, 94, .	3.2	6
43	Magnetic guiding of a slow metastable beam. Optics Communications, 2002, 204, 185-194.	2.1	5
44	Das ideale Quantenlabor: Bose-Einstein-Kondensation. Physik in Unserer Zeit, 2003, 34, 168-176.	0.0	5
45	Tunable gauge potential for spinless particles in driven lattices. EPJ Web of Conferences, 2013, 57, 01004.	0.3	1