Steven B Bradfute

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3346441/publications.pdf

Version: 2024-02-01

136950 79698 5,796 75 32 citations h-index papers

g-index 80 80 80 10747 docs citations times ranked citing authors all docs

73

#	Article	IF	Citations
1	Non-autophagy Role of Atg5 and NBR1 in Unconventional Secretion of IL-12 Prevents Gut Dysbiosis and Inflammation. Journal of Crohn's and Colitis, 2022, 16, 259-274.	1.3	10
2	Use of a Novel Detection Tool to Survey Orthohantaviruses in Wild-Caught Rodent Populations. Viruses, 2022, 14, 682.	3.3	2
3	Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Science Translational Medicine, 2022, 14, eabl5399.	12.4	16
4	The discovery and development of novel treatment strategies for filoviruses. Expert Opinion on Drug Discovery, 2022, 17, 139-149.	5.0	9
5	Elevated SARS-CoV-2 in peripheral blood and increased COVID-19 severity in American Indians/Alaska Natives. Experimental Biology and Medicine, 2022, 247, 1253-1263.	2.4	2
6	Healthy humans can be a source of antibodies countering COVID-19. Bioengineered, 2022, 13, 12598-12624.	3.2	0
7	The iminosugars celgosivir, castanospermine and UV-4 inhibit SARS-CoV-2 replication. Glycobiology, 2021, 31, 378-384.	2.5	44
8	Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. International Journal of Pharmaceutics, 2021, 597, 120340.	5.2	16
9	Anti-SARS-CoV-2 Activity of Surgical Masks Infused with Quaternary Ammonium Salts. Viruses, 2021, 13, 960.	3.3	7
10	Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. ELife, 2021, 10, .	6.0	13
11	COVID-19 global pandemic planning: Presence of SARS-CoV-2 fomites in a university hospital setting. Experimental Biology and Medicine, 2021, 246, 2039-2045.	2.4	7
12	RNA Phage VLP-Based Vaccine Platforms. Pharmaceuticals, 2021, 14, 764.	3.8	9
13	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
14	Longitudinal Assessment of Cytokine Expression and Plasminogen Activation in Hantavirus Cardiopulmonary Syndrome Reveals Immune Regulatory Dysfunction in End-Stage Disease. Viruses, 2021, 13, 1597.	3.3	4
15	Tracing Transmission of Sin Nombre Virus and Discovery of Infection in Multiple Rodent Species. Journal of Virology, 2021, 95, e0153421.	3.4	14
16	Correlation of SARS-CoV-2 Neutralizing Antibodies to an Automated Chemiluminescent Serological Immunoassay. journal of applied laboratory medicine, The, 2021, 6, 491-495.	1.3	16
17	COVID-19 global pandemic planning: Dry heat incubation and ambient temperature fail to consistently inactivate SARS-CoV-2 on N95 respirators. Experimental Biology and Medicine, 2021, 246, 952-959.	2.4	4
18	Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19. ACS Pharmacology and Translational Science, 2020, 3, 1278-1292.	4.9	43

#	Article	IF	Citations
19	Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies, 2020, 9, 28.	2.5	24
20	Engineered Human Cathelicidin Antimicrobial Peptides Inhibit Ebola Virus Infection. IScience, 2020, 23, 100999.	4.1	40
21	Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Antibody Titers in Convalescent Plasma and Recipients in New Mexico: An Open Treatment Study in Patients With Coronavirus Disease 2019. Journal of Infectious Diseases, 2020, 222, 1620-1628.	4.0	41
22	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
23	COVID-19 global pandemic planning: Decontamination and reuse processes for N95 respirators. Experimental Biology and Medicine, 2020, 245, 933-939.	2.4	31
24	Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines, 2020, 8, 273.	4.4	23
25	The value of antimicrobial peptides in the age of resistance. Lancet Infectious Diseases, The, 2020, 20, e216-e230.	9.1	573
26	The use of mice lacking type I or both type I and type II interferon responses in research on hemorrhagic fever viruses. Part 1: Potential effects on adaptive immunity and response to vaccination. Antiviral Research, 2020, 174, 104703.	4.1	16
27	Generation and Selection of a Panel of Pan-Filovirus Single-Chain Antibodies using Cell-Free Ribosome Display. American Journal of Tropical Medicine and Hygiene, 2019, 101, 198-206.	1.4	6
28	Ebola virus vaccination and the longevity of total versus neutralising antibody responseâ€"is it enough?. Lancet Infectious Diseases, The, 2018, 18, 699-700.	9.1	4
29	Ribosome display for the rapid generation of high-affinity Zika-neutralizing single-chain antibodies. PLoS ONE, 2018, 13, e0205743.	2.5	13
30	Amphiphilic block copolymer delivery of a DNA vaccine against Zika virus. Vaccine, 2018, 36, 6911-6917.	3.8	17
31	Advances in Ebola virus vaccination. Lancet Infectious Diseases, The, 2017, 17, 787-788.	9.1	2
32	Comparison of N - and O -linked glycosylation patterns of ebolavirus glycoproteins. Virology, 2017, 502, 39-47.	2.4	26
33	Production and Purification of Filovirus Glycoproteins in Insect and Mammalian Cell Lines. Scientific Reports, 2017, 7, 15091.	3.3	11
34	The early clinical development of Ebola virus treatments. Expert Opinion on Investigational Drugs, 2017, 26, 1-4.	4.1	3
35	Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge. PLoS ONE, 2016, 11, e0162446.	2.5	26
36	Duration of immune responses after Ebola virus vaccination. Lancet Infectious Diseases, The, 2016, 16, 2-3.	9.1	4

#	Article	IF	Citations
37	Eastern equine encephalitis virus in mice I: clinical course and outcome are dependent on route of exposure. Virology Journal, 2015, 12, 152.	3.4	17
38	Filoviruses: One of These Things is (not) Like the Other. Viruses, 2015, 7, 5172-5190.	3.3	27
39	Virus-Like Particles Activate Type I Interferon Pathways to Facilitate Post-Exposure Protection against Ebola Virus Infection. PLoS ONE, 2015, 10, e0118345.	2.5	21
40	Mechanisms of Immunity in Post-Exposure Vaccination against Ebola Virus Infection. PLoS ONE, 2015, 10, e0118434.	2.5	18
41	Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nature Communications, 2015, 6, 8620.	12.8	130
42	Staphylococcus aureus: Current State of Prevalence, Impact, and Vaccine Development. Current Pharmaceutical Design, 2015, 21, 2131-2135.	1.9	4
43	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	2.1	59
44	Induced IL-10 Splice Altering Approach to Antiviral Drug Discovery. Nucleic Acid Therapeutics, 2014, 24, 179-185.	3.6	12
45	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
46	Ebola Virus-Like Particles Stimulate Type I Interferons and Proinflammatory Cytokine Expression Through the Toll-Like Receptor and Interferon Signaling Pathways. Journal of Interferon and Cytokine Research, 2014, 34, 79-89.	1.2	37
47	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	2.1	54
48	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	2.1	99
49	Autophagy as an immune effector against tuberculosis. Current Opinion in Microbiology, 2013, 16, 355-365.	5.1	101
50	Mouse Models for Filovirus Infections. Viruses, 2012, 4, 1477-1508.	3.3	59
51	TBK-1 Promotes Autophagy-Mediated Antimicrobial Defense by Controlling Autophagosome Maturation. Immunity, 2012, 37, 223-234.	14.3	563
52	Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice. Vaccine, 2011, 29, 2968-2977.	3.8	69
53	Development and characterization of rabbit and mouse antibodies against ebolavirus envelope glycoproteins. Journal of Virological Methods, 2011, 174, 99-109.	2.1	13
54	A STAT-1 knockout mouse model for Machupo virus pathogenesis. Virology Journal, 2011, 8, 300.	3.4	36

#	Article	IF	CITATIONS
55	Crimean-Congo hemorrhagic fever: Current and future prospects of vaccines and therapies. Antiviral Research, 2011, 90, 85-92.	4.1	91
56	Ebolavirus Δ-Peptide Immunoadhesins Inhibit Marburgvirus and Ebolavirus Cell Entry. Journal of Virology, 2011, 85, 8502-8513.	3.4	41
57	Filovirus Infection of STAT-1 Knockout Mice. Journal of Infectious Diseases, 2011, 204, S986-S990.	4.0	67
58	Filovirius vaccines. Hum Vaccin, 2011, 7, 701-711.	2.4	29
59	Correlates of Immunity to Filovirus Infection. Viruses, 2011, 3, 982-1000.	3.3	35
60	Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis. Journal of Immunology, 2010, 184, 327-335.	0.8	69
61	Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis. Journal of Biological Chemistry, 2009, 284, 12874-12885.	3.4	26
62	Ebola Zaire Virus Blocks Type I Interferon Production by Exploiting the Host SUMO Modification Machinery. PLoS Pathogens, 2009, 5, e1000493.	4.7	185
63	Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever. Journal of Virology, 2009, 83, 6404-6415.	3.4	99
64	Reduced Levels of Protein Tyrosine Phosphatase CD45 Protect Mice from the Lethal Effects of Ebola Virus Infection. Cell Host and Microbe, 2009, 6, 162-173.	11.0	22
65	Functional CD8+ T Cell Responses in Lethal Ebola Virus Infection. Journal of Immunology, 2008, 180, 4058-4066.	0.8	76
66	Lymphocyte Death in a Mouse Model of Ebola Virus Infection. Journal of Infectious Diseases, 2007, 196, S296-S304.	4.0	79
67	Hematopoietic Fingerprints: An Expression Database of Stem Cells and Their Progeny. Cell Stem Cell, 2007, 1, 578-591.	11.1	279
68	Development of a model for marburgvirus based on severe-combined immunodeficiency mice. Virology Journal, 2007, 4, 108.	3.4	53
69	Differential mRNA Processing in Hematopoietic Stem Cells. Stem Cells, 2006, 24, 662-670.	3.2	20
70	Roles of Sca-1 in hematopoietic stem/progenitor cell function. Experimental Hematology, 2005, 33, 836-843.	0.4	108
71	Lineage Fingerprints: The Transcriptome of the Hematopoietic System Blood, 2005, 106, 1741-1741.	1.4	0
72	Cardiac Muscle Plasticity in Adult and Embryo by Heartâ€Derived Progenitor Cells. Annals of the New York Academy of Sciences, 2004, 1015, 182-189.	3.8	132

STEVEN B BRADFUTE

#	Article	IF	CITATIONS
73	Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12313-12318.	7.1	1,652
74	Adenoviral transduction of mouse hematopoietic stem cells. Molecular Therapy, 2003, 7, 334-340.	8.2	19
75	Immune responses to herpes simplex virus infection: implications for vaccine development. Journal of Infectious Diseases, 0, , .	4.0	O