Andreas Androutsellis-Theotokis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3346293/publications.pdf

Version: 2024-02-01

49 papers

2,858 citations

20 h-index 233421 45 g-index

49 all docs 49 docs citations

times ranked

49

4172 citing authors

#	Article	IF	Citations
1	Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 2006, 442, 823-826.	27.8	936
2	Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 $\hat{l}\pm$. Oncogene, 2009, 28, 3949-3959.	5.9	628
3	Long-Lasting Regeneration After Ischemia in the Cerebral Cortex. Stroke, 2007, 38, 153-161.	2.0	159
4	The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14891-14896.	7.1	121
5	Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13570-13575.	7.1	93
6	Characterization of a Functional Bacterial Homologue of Sodium-dependent Neurotransmitter Transporters. Journal of Biological Chemistry, 2003, 278, 12703-12709.	3.4	86
7	Accessibility and Conformational Coupling in Serotonin Transporter Predicted Internal Domains. Journal of Neuroscience, 2002, 22, 8370-8378.	3.6	57
8	Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology, 2014, 60, 1196-1210.	7.3	57
9	Angiogenic Factors Stimulate Growth of Adult Neural Stem Cells. PLoS ONE, 2010, 5, e9414.	2.5	52
10	Analysis of Transmembrane Domain 2 of Rat Serotonin Transporter by Cysteine Scanning Mutagenesis. Journal of Biological Chemistry, 2004, 279, 22926-22933.	3.4	47
11	Enhanced targeting of invasive glioblastoma cells by peptide-functionalized gold nanorods in hydrogel-based 3D cultures. Acta Biomaterialia, 2017, 58, 12-25.	8.3	45
12	Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies. Scientific Reports, 2017, 7, 43946.	3.3	45
13	A Conformationally Sensitive Residue on the Cytoplasmic Surface of Serotonin Transporter. Journal of Biological Chemistry, 2001, 276, 45933-45938.	3.4	43
14	The depolarisation-induced release of [1251]BDNF from brain tissue. Brain Research, 1996, 743, 40-48.	2.2	39
15	A Lithium-induced Conformational Change in Serotonin Transporter Alters Cocaine Binding, Ion Conductance, and Reactivity of Cys-109. Journal of Biological Chemistry, 2001, 276, 30942-30947.	3.4	36
16	Chromaffin cells: the peripheral brain. Molecular Psychiatry, 2012, 17, 354-358.	7.9	33
17	Signaling Pathways Controlling Neural Stem Cells Slow Progressive Brain Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 403-410.	1.1	32
18	Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics. Scientific Reports, 2013, 3, 1095.	3.3	32

#	Article	IF	CITATIONS
19	Multipotent Glia-Like Stem Cells Mediate Stress Adaptation. Stem Cells, 2015, 33, 2037-2051.	3.2	31
20	Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells. Hormone and Metabolic Research, 2013, 45, 159-168.	1.5	22
21	The p38 signaling pathway mediates quiescence of glioma stem cells by regulating epidermal growth factor receptor trafficking. Oncotarget, 2017, 8, 33316-33328.	1.8	22
22	Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation?. Molecular and Cellular Endocrinology, 2017, 441, 156-163.	3.2	21
23	Cholera Toxin Regulates a Signaling Pathway Critical for the Expansion of Neural Stem Cell Cultures from the Fetal and Adult Rodent Brains. PLoS ONE, 2010, 5, e10841.	2.5	20
24	The effects of stress on brain and adrenal stem cells. Molecular Psychiatry, 2016, 21, 590-593.	7.9	19
25	Generating Neurons from Stem Cells. Methods in Molecular Biology, 2008, 438, 31-38.	0.9	17
26	Effects of dehydroepiandrosterone on proliferation and differentiation of chromaffin progenitor cells. Molecular and Cellular Endocrinology, 2011, 336, 141-148.	3.2	15
27	The STAT3-Ser/Hes3 signaling axis: an emerging regulator of endogenous regeneration and cancer growth. Frontiers in Physiology, 2013, 4, 273.	2.8	13
28	Hes3 Is Expressed in the Adult Pancreatic Islet and Regulates Gene Expression, Cell Growth, and Insulin Release. Journal of Biological Chemistry, 2014, 289, 35503-35516.	3.4	13
29	Neurovascular Signals Suggest a Propagation Mechanism for Endogenous Stem Cell Activation Along Blood Vessels. CNS and Neurological Disorders - Drug Targets, 2012, 11, 805-817.	1.4	12
30	Expression of progenitor markers is associated with the functionality of a bioartificial adrenal cortex. PLoS ONE, 2018, 13, e0194643.	2.5	10
31	The Role of eNSCs in Neurodegenerative Disease. Molecular Neurobiology, 2012, 46, 555-562.	4.0	9
32	Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes, 2016, 65, 314-330.	0.6	9
33	Fast, Potent Pharmacological Expansion of Endogenous Hes3+/Sox2+ Cells in the Adult Mouse and Rat Hippocampus. PLoS ONE, 2012, 7, e51630.	2.5	8
34	A Defined, Controlled Culture System for Primary Bovine Chromaffin Progenitors Reveals Novel Biomarkers and Modulators. Stem Cells Translational Medicine, 2014, 3, 801-808.	3.3	8
35	STAT3-Ser/Hes3 Signaling: A New Molecular Component of the Neuroendocrine System?. Hormone and Metabolic Research, 2016, 48, 77-82.	1.5	8
36	Identifying Endogenous Neural Stem Cells in the Adult Brain In Vitro and In Vivo: Novel Approaches. Current Pharmaceutical Design, 2013, 19, 6499-6506.	1.9	8

#	Article	IF	Citations
37	Common features between chromaffin and neural progenitor cells. Molecular Psychiatry, 2012, 17, 351-351.	7.9	7
38	Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery. FASEB Journal, 2019, 33, 9235-9249.	0.5	7
39	Growing Neural Stem Cells from Conventional and Nonconventional Regions of the Adult Rodent Brain. Journal of Visualized Experiments, 2013, , e50880.	0.3	6
40	The STAT3-Ser/Hes3 signaling axis in cancer. Frontiers in Bioscience - Landmark, 2014, 19, 718.	3.0	6
41	Concise Review: Reprogramming, Behind the Scenes: Noncanonical Neural Stem Cell Signaling Pathways Reveal New, Unseen Regulators of Tissue Plasticity With Therapeutic Implications. Stem Cells Translational Medicine, 2015, 4, 1251-1257.	3.3	6
42	Hes3 expression in the adult mouse brain is regulated during demyelination and remyelination. Brain Research, 2016, 1642, 124-130.	2.2	6
43	Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population. Molecular and Cellular Endocrinology, 2015, 408, 178-184.	3.2	5
44	Streptozotocin-induced \hat{l}^2 -cell damage, high fat diet, and metformin administration regulate Hes3 expression in the adult mouse brain. Scientific Reports, 2018, 8, 11335.	3.3	5
45	Expression of the transcription factor Hes3 in the mouse and human ocular surface, and in pterygium. International Journal of Radiation Biology, 2014, 90, 700-709.	1.8	2
46	Spicing up endogenous neural stem cells: aromatic-turmerone offers new possibilities for tackling neurodegeneration. Stem Cell Research and Therapy, 2014, 5, 127.	5.5	1
47	STEM CELL THERAPIES FOR PARKINSON'S DISEASE. , 2008, , 161-180.		1
48	Editorial (Hot Topic: Neural Stem Cells and Neurodegeneration). CNS and Neurological Disorders - Drug Targets, 2012, 11, 803-804.	1.4	0
49	Methods for Assessing the Regenerative Responses of Neural Tissue. Methods in Molecular Biology, 2014, 1213, 293-302.	0.9	0