## Heerajnarain Bulluck Mbbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3346146/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Noncontrast CMR Risk Score for Long-Term Risk Stratification in Reperfused ST-Segment Elevation<br>Myocardial Infarction. JACC: Cardiovascular Imaging, 2022, 15, 431-440.                                                                                                                                                                     | 5.3  | 8         |
| 2  | Contemporary tools and devices for coronary calcium modification. JRSM Cardiovascular Disease, 2022, 11, 204800402210897.                                                                                                                                                                                                                        | 0.7  | 2         |
| 3  | Meta-Analysis Comparing 10-Year Mortality Following Percutaneous Coronary Intervention or<br>Coronary Artery Bypass Grafting in Left Main Stem or Multivessel Coronary Artery Disease. American<br>Journal of Cardiology, 2022, , .                                                                                                              | 1.6  | 1         |
| 4  | Incidence and Clinical Predictors of Non-Obstructive Coronary Arteries in Patients With Suspected<br>Non-ST Elevation Myocardial Infarction Undergoing Invasive Coronary Angiography. Heart Lung and<br>Circulation, 2022, 31, e115-e116.                                                                                                        | 0.4  | 1         |
| 5  | A multisystem, cardio-renal investigation of post-COVID-19 illness. Nature Medicine, 2022, 28, 1303-1313.                                                                                                                                                                                                                                        | 30.7 | 39        |
| 6  | Negative interaction between nitrates and remote ischemic preconditioning in patients undergoing cardiac surgery: the ERIC-GTN and ERICCA studies. Basic Research in Cardiology, 2022, 117, .                                                                                                                                                    | 5.9  | 5         |
| 7  | T and Small Protrusion (TAP) vs Double-Kissing Crush Technique: Insights From In Vitro Models.<br>Cardiovascular Revascularization Medicine, 2021, 24, 11-17.                                                                                                                                                                                    | 0.8  | 5         |
| 8  | Procedural myocardial injury, infarction and mortality in patients undergoing elective PCI: a pooled analysis of patient-level data. European Heart Journal, 2021, 42, 323-334.                                                                                                                                                                  | 2.2  | 68        |
| 9  | Association between smoking status and outcomes in myocardial infarction patients undergoing percutaneous coronary intervention. Scientific Reports, 2021, 11, 6466.                                                                                                                                                                             | 3.3  | 19        |
| 10 | Prognostically relevant periprocedural myocardial injury and infarction associated with<br>percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular<br>Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI).<br>European Heart Journal, 2021, 42, 2630-2642. | 2.2  | 69        |
| 11 | Combining Invasive Coronary Physiology With CMR for Long-Term Risk-Stratification in STEMI. JACC:<br>Cardiovascular Imaging, 2021, 14, 1960-1962.                                                                                                                                                                                                | 5.3  | 0         |
| 12 | Optimal glucose, HbA1c, glucose-HbA1c ratio and stress-hyperglycaemia ratio cut-off values for<br>predicting 1-year mortality in diabetic and non-diabetic acute myocardial infarction patients.<br>Cardiovascular Diabetology, 2021, 20, 211.                                                                                                   | 6.8  | 27        |
| 13 | Effect of remote ischaemic conditioning on infarct size and remodelling in ST-segment elevation<br>myocardial infarction patients: the CONDI-2/ERIC-PPCI CMR substudy. Basic Research in Cardiology,<br>2021, 116, 59.                                                                                                                           | 5.9  | 13        |
| 14 | Prognostically relevant cardiac troponin elevations with percutaneous coronary interventions.<br>European Heart Journal, 2021, , .                                                                                                                                                                                                               | 2.2  | 1         |
| 15 | Feasibility to Perform T <sub>2</sub> * Mapping Postcontrast Administration in Reperfused STEMI<br>Patients for the Detection of Intramyocardial Hemorrhage. Journal of Magnetic Resonance Imaging,<br>2020, 51, 644-645.                                                                                                                        | 3.4  | 1         |
| 16 | Redefining Adverse and Reverse Left Ventricular Remodeling by Cardiovascular Magnetic Resonance<br>Following ST-Segment–Elevation Myocardial Infarction and Their Implications on Long-Term<br>Prognosis. Circulation: Cardiovascular Imaging, 2020, 13, e009937.                                                                                | 2.6  | 24        |
| 17 | Response to the letter to the editor regarding the study "Impact of time of onset of symptom of ST-segment elevation myocardial infarction on 1-year rehospitalization for heart failure and mortality―published in the American Heart Journal. American Heart Journal, 2020, 228, 117-118.                                                      | 2.7  | 0         |
| 18 | Effect of remote ischemic preConditioning on liver injury in patients undergoing liver resection: the FRIC-LIVER trial. Hpb. 2020, 22, 1250-1257.                                                                                                                                                                                                | 0.3  | 11        |

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Myocardial Edema, Myocyte Injury, and Disease Severity in Fabry Disease. Circulation: Cardiovascular<br>Imaging, 2020, 13, e010171.                                                                                                                              | 2.6  | 35        |
| 20 | Periprocedural Cardiac Troponin and Mortality inÂStable Patients UndergoingÂPCI. JACC:<br>Cardiovascular Interventions, 2020, 13, 266.                                                                                                                           | 2.9  | 0         |
| 21 | Impact of time of onset of symptom of ST-segment elevation myocardial infarction on 1-year rehospitalization for heart failure and mortality. American Heart Journal, 2020, 224, 1-9.                                                                            | 2.7  | 3         |
| 22 | The Lipid Paradox is present in ST-elevation but not in non-ST-elevation myocardial infarction patients:<br>Insights from the Singapore Myocardial Infarction Registry. Scientific Reports, 2020, 10, 6799.                                                      | 3.3  | 18        |
| 23 | Cardioprotection for Acute MI in Light of the CONDI2/ERIC-PPCI Trial: New Targets Needed.<br>Interventional Cardiology Review, 2020, 15, e13.                                                                                                                    | 1.6  | 3         |
| 24 | Periprocedural elevated myocardial biomarkers and clinical outcomes following elective percutaneous coronary intervention: a comprehensive dose-response meta-analysis of 44,972 patients from 24 prospective studies. EuroIntervention, 2020, 15, 1444-1450.    | 3.2  | 20        |
| 25 | Independent Predictors of Cardiac Mortality and Hospitalization for Heart Failure in a Multi-Ethnic<br>Asian ST-segment Elevation Myocardial Infarction Population Treated by Primary Percutaneous<br>Coronary Intervention. Scientific Reports, 2019, 9, 10072. | 3.3  | 15        |
| 26 | Optimized Treatment of ST-Elevation Myocardial Infarction. Circulation Research, 2019, 125, 245-258.                                                                                                                                                             | 4.5  | 140       |
| 27 | Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. Lancet, The, 2019, 394, 1415-1424.                                                    | 13.7 | 223       |
| 28 | A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circulation: Cardiovascular Imaging, 2019, 12, e009214.                                                                   | 2.6  | 75        |
| 29 | Toward Improving Our Understanding of the Relationship Between IMR and MVO in STEMI Patients.<br>JACC: Cardiovascular Imaging, 2019, 12, 1593-1594.                                                                                                              | 5.3  | 2         |
| 30 | The Effect of Blood Composition on T1ÂMapping. JACC: Cardiovascular Imaging, 2019, 12, 1888-1890.                                                                                                                                                                | 5.3  | 9         |
| 31 | Interrogation of the infarcted and salvaged myocardium using multi-parametric mapping<br>cardiovascular magnetic resonance in reperfused ST-segment elevation myocardial infarction<br>patients. Scientific Reports, 2019, 9, 9056.                              | 3.3  | 1         |
| 32 | Mineralocorticoid receptor antagonist pre-treatment and early post-treatment to minimize<br>reperfusion injury after ST-elevation myocardial infarction: The MINIMIZE STEMI trial. American Heart<br>Journal, 2019, 211, 60-67.                                  | 2.7  | 18        |
| 33 | Platelet inhibition to target reperfusion injury trial: Rationale and study design. Clinical Cardiology, 2019, 42, 5-12.                                                                                                                                         | 1.8  | 15        |
| 34 | Defining a â€~frequent admitter' phenotype among patients with repeat heart failure admissions.<br>European Journal of Heart Failure, 2019, 21, 311-318.                                                                                                         | 7.1  | 15        |
| 35 | Cardiac Structural and Functional Consequences of Amyloid Deposition byÂCardiac Magnetic<br>Resonance andÂEchocardiography and TheirÂPrognosticÂRoles. JACC: Cardiovascular Imaging, 2019, 12,<br>823-833.                                                       | 5.3  | 113       |
| 36 | ls there a role for remote ischemic conditioning in preventing 5-fluorouracil-induced coronary vasospasm?. Conditioning Medicine, 2019, 2, 204-212.                                                                                                              | 1.3  | 1         |

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chronic remote ischemic conditioning for cardiovascular protection. Conditioning Medicine, 2019, 2, 164-169.                                                                                                                                                                             | 1.3  | 7         |
| 38 | Letter by Bulluck and Hausenloy Regarding Article, "Dynamic Edematous Response of the Human Heart<br>to Myocardial Infarction: Implications for Assessing Myocardial Area at Risk and Salvage―<br>Circulation, 2018, 137, 1748-1749.                                                     | 1.6  | 0         |
| 39 | Myocardial native T1 and extracellular volume with healthy ageing and gender. European Heart<br>Journal Cardiovascular Imaging, 2018, 19, 615-621.                                                                                                                                       | 1.2  | 78        |
| 40 | Bivalirudin versus Heparin Monotherapy in Myocardial Infarction. New England Journal of Medicine, 2018, 378, 298-301.                                                                                                                                                                    | 27.0 | 4         |
| 41 | Bioresorbable Scaffold Stability and Mechanical Properties. , 2018, , 641-658.                                                                                                                                                                                                           |      | 1         |
| 42 | Cardiovascular Magnetic Resonance in Acute ST-Segment–Elevation Myocardial Infarction.<br>Circulation, 2018, 137, 1949-1964.                                                                                                                                                             | 1.6  | 128       |
| 43 | Risk Stratification by Cardiovascular Magnetic Resonance After Reperfused ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Imaging, 2018, 11, 826-828.                                                                                                                   | 5.3  | 1         |
| 44 | Age and ejection fraction modify the impact of atrial fibrillation on acute heart failure outcomes.<br>European Journal of Heart Failure, 2018, 20, 821-822.                                                                                                                             | 7.1  | 2         |
| 45 | Neutrophil gelatinase-associated lipocalin prior to cardiac surgery predicts acute kidney injury and mortality. Heart, 2018, 104, 313-317.                                                                                                                                               | 2.9  | 16        |
| 46 | Incidence and predictors of left ventricular thrombus by cardiovascular magnetic resonance in acute<br>ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: a<br>meta-analysis. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 72. | 3.3  | 79        |
| 47 | Optimizing the Detection of Left Ventricular Thrombus Following Acute Myocardial Infarction in the Current Era. JAMA Cardiology, 2018, 3, 1128.                                                                                                                                          | 6.1  | 1         |
| 48 | Coronary Microvascular Injury in Reperfused Acute Myocardial Infarction: A View From an Integrative Perspective. Journal of the American Heart Association, 2018, 7, e009949.                                                                                                            | 3.7  | 61        |
| 49 | Modulating NAD+ metabolism to prevent acute kidney injury. Nature Medicine, 2018, 24, 1306-1307.                                                                                                                                                                                         | 30.7 | 14        |
| 50 | Management of ST segment elevation myocardial infarction. Medicine, 2018, 46, 540-546.                                                                                                                                                                                                   | 0.4  | 1         |
| 51 | Fundamentals of bioresorbable stents. , 2018, , 75-97.                                                                                                                                                                                                                                   |      | 3         |
| 52 | Impact of Cardioprotective Therapies on the Edema-Based Area at Risk by CMR in Reperfused STEMI.<br>Journal of the American College of Cardiology, 2018, 71, 2856-2858.                                                                                                                  | 2.8  | 9         |
| 53 | Myocardial Edema and Prognosis inÂAmyloidosis. Journal of the American College of Cardiology, 2018,<br>71, 2919-2931.                                                                                                                                                                    | 2.8  | 145       |
| 54 | Percutaneous coronary intervention of saphenous vein grafts: where do we stand?.<br>EuroIntervention, 2018, 14, 142-143.                                                                                                                                                                 | 3.2  | 0         |

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Remote ischemic conditioning in ST-segment elevation myocardial infarction - an update. Conditioning Medicine, 2018, 1, 13-22.                                                                                                                                                                                             | 1.3 | 13        |
| 56 | Diagnostic performance of <i>T</i> <sub>1</sub> and <i>T</i> <sub>2</sub> mapping to detect intramyocardial hemorrhage in reperfused STâ€segment elevation myocardial infarction (STEMI) patients. Journal of Magnetic Resonance Imaging, 2017, 46, 877-886.                                                               | 3.4 | 24        |
| 57 | Invasive Assessment of the Coronary Microcirculation in Reperfused ST-Segment–Elevation<br>Myocardial Infarction Patients. Circulation: Cardiovascular Interventions, 2017, 10, .                                                                                                                                          | 3.9 | 45        |
| 58 | Relationship between aetiology and left ventricular systolic dysfunction in hypertrophic cardiomyopathy. Heart, 2017, 103, 300-306.                                                                                                                                                                                        | 2.9 | 30        |
| 59 | Myocardial Infarct Size by CMR in ClinicalÂCardioprotection Studies. JACC: Cardiovascular Imaging, 2017, 10, 230-240.                                                                                                                                                                                                      | 5.3 | 78        |
| 60 | Age and Surgical Complexity impact on Renoprotection by Remote Ischemic Preconditioning during Adult Cardiac Surgery: A Meta analysis. Scientific Reports, 2017, 7, 215.                                                                                                                                                   | 3.3 | 19        |
| 61 | Reply to "Circadian variation in acute myocardial infarction size: Likely involvement of the melatonin<br>and suprachiasmatic nucleiâ€: International Journal of Cardiology, 2017, 235, 192-193.                                                                                                                           | 1.7 | 1         |
| 62 | Reply. JACC: Cardiovascular Interventions, 2017, 10, 422.                                                                                                                                                                                                                                                                  | 2.9 | 0         |
| 63 | Circadian variation in acute myocardial infarct size assessed by cardiovascular magnetic resonance in reperfused STEMI patients. International Journal of Cardiology, 2017, 230, 149-154.                                                                                                                                  | 1.7 | 31        |
| 64 | Response by Andrews et al to Letter Regarding Article, "Electrical and Structural Substrate of<br>Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive<br>Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging― Circulation:<br>Arrhythmia and Electrophysiology, 2017, 10. | 4.8 | 0         |
| 65 | Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy<br>Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance<br>Imaging. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .                                                          | 4.8 | 42        |
| 66 | Magnetic Resonance in TransthyretinÂCardiac Amyloidosis. Journal of the American College of<br>Cardiology, 2017, 70, 466-477.                                                                                                                                                                                              | 2.8 | 290       |
| 67 | ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position<br>Paper: Peri-operative myocardial injury and infarction in patients undergoing coronary artery bypass<br>graft surgery. European Heart Journal, 2017, 38, 2392-2411.                                                   | 2.2 | 118       |
| 68 | Quantifying the area-at-risk of myocardial infarction in-vivo using arterial spin labeling cardiac magnetic resonance. Scientific Reports, 2017, 7, 2271.                                                                                                                                                                  | 3.3 | 11        |
| 69 | 001â€Multiparametric mapping to understand pathophysiology in cardiac amyloidosis. Heart, 2017, 103,<br>A1-A2.                                                                                                                                                                                                             | 2.9 | 12        |
| 70 | Redefining viability by cardiovascular magnetic resonance in acute ST-segment elevation myocardial infarction. Scientific Reports, 2017, 7, 14676.                                                                                                                                                                         | 3.3 | 11        |
| 71 | 024â€Spectrum and significance of CMR findings in cardiac transthyretin amyloidosis. Heart, 2017, 103,<br>A20-A21.                                                                                                                                                                                                         | 2.9 | 0         |
| 72 | Full left ventricular coverage is essential for the accurate quantification of the area-at-risk by T1 and T2 mapping. Scientific Reports, 2017, 7, 4871.                                                                                                                                                                   | 3.3 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mapping Myocardial Salvage Index by Extracellular Volume Fraction. Circulation: Cardiovascular<br>Imaging, 2017, 10, .                                                                                                                                                                                                                                                                                              | 2.6 | 3         |
| 74 | Bioresorbable stents: Current and upcoming bioresorbable technologies. International Journal of Cardiology, 2017, 228, 931-939.                                                                                                                                                                                                                                                                                     | 1.7 | 116       |
| 75 | Left Ventricular Hypertrophy Revisited. Circulation, 2017, 136, 2519-2521.                                                                                                                                                                                                                                                                                                                                          | 1.6 | 37        |
| 76 | Gender Differences in Native Myocardial T1 in a Healthy Chinese Volunteer Cohort. Cardiovascular<br>Imaging Asia, 2017, 1, 110.                                                                                                                                                                                                                                                                                     | 0.1 | 12        |
| 77 | Stent malapposition and the risk of stent thrombosis: mechanistic insights from an in vitro model.<br>EuroIntervention, 2017, 13, e1096-e1098.<br>ORAL AB II OUICK FIRE BASIC1393Validation of aortic in-vitro strain measurement by Magnetic Resonance                                                                                                                                                             | 3.2 | 37        |
| 78 | Imaging with realistic abdominal aortic aneurism phantom1474A novel method of Segment Length<br>Tracking providing regional strain measures from standard CMR cine images in CRT candidates1623T1<br>mapping can quantify the area-at-risk and infarct size – no need for T2 mapping or conventional LGE<br>imaging in acute STEMI at 1.5T1373Reliability and reproducibility of trans-valvular flow measurement by | 1.2 | 0         |
| 79 | 4D flow magneti. European Heart Journal Cardiovascular Imaging, 2016, 17, i10-i13.<br>Impact of microvascular obstruction on semiautomated techniques for quantifying acute and<br>chronic myocardial infarction by cardiovascular magnetic resonance. Open Heart, 2016, 3, e000535.                                                                                                                                | 2.3 | 18        |
| 80 | Residual Myocardial Iron Following Intramyocardial Hemorrhage During the Convalescent Phase of<br>Reperfused ST-Segment–Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling.<br>Circulation: Cardiovascular Imaging, 2016, 9, .                                                                                                                                                                 | 2.6 | 120       |
| 81 | Response to Letters Regarding Article, "Prognostic Value of Late Gadolinium Enhancement<br>Cardiovascular Magnetic Resonance in Cardiac Amyloidosisâ€ŧ Circulation, 2016, 133, e450-1.                                                                                                                                                                                                                              | 1.6 | 4         |
| 82 | Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: An updated meta-analysis of randomized controlled trials. International Journal of Cardiology, 2016, 202, 228-237.                                                                                                                                                                                       | 1.7 | 62        |
| 83 | Cardiac Fabry Disease With Late Gadolinium Enhancement Is a Chronic Inflammatory Cardiomyopathy.<br>Journal of the American College of Cardiology, 2016, 68, 1707-1708.                                                                                                                                                                                                                                             | 2.8 | 78        |
| 84 | Optimization of coronary optical coherence tomography imaging using the attenuation-compensated technique: a validation study. European Heart Journal Cardiovascular Imaging, 2016, 18, jew153.                                                                                                                                                                                                                     | 1.2 | 10        |
| 85 | Automated Extracellular Volume Fraction Mapping Provides Insights Into the Pathophysiology of Left<br>Ventricular Remodeling Post–Reperfused STâ€Elevation Myocardial Infarction. Journal of the American<br>Heart Association, 2016, 5, .                                                                                                                                                                          | 3.7 | 46        |
| 86 | From basic mechanisms to clinical applications in heart protection, new players in cardiovascular<br>diseases and cardiac theranostics: meeting report from the third international symposium on "New<br>frontiers in cardiovascular research― Basic Research in Cardiology, 2016, 111, 69.                                                                                                                         | 5.9 | 41        |
| 87 | Index of Microvascular Resistance and Microvascular Obstruction in Patients With Acute Myocardial<br>Infarction. JACC: Cardiovascular Interventions, 2016, 9, 2172-2174.                                                                                                                                                                                                                                            | 2.9 | 26        |
| 88 | Diffuse myocardial fibrosis - a therapeutic target? Proof of regression at 1-year following aortic valve replacement: the RELIEF-AS study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O37.                                                                                                                                                                                                             | 3.3 | 5         |
| 89 | CMR findings in high endurance veteran athletes - a 247 subject study. Journal of Cardiovascular<br>Magnetic Resonance, 2016, 18, O38.                                                                                                                                                                                                                                                                              | 3.3 | 5         |
| 90 | Native myocardial T1 and ECV with age and gender developing normal reference ranges - a 94 healthy volunteer study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O42.                                                                                                                                                                                                                                    | 3.3 | 7         |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Hematocrit, iron and HDL-cholesterol explain 90% of variation in native blood T1. Journal of<br>Cardiovascular Magnetic Resonance, 2016, 18, O86.                                                                                                                   | 3.3 | 3         |
| 92  | The Right ventricle and cardiac surgery - more resilient than thought: multiparametric quantification shows altered rather than reduced function. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P140.                                                     | 3.3 | 0         |
| 93  | Reproducibility of native T1 mapping using ShMOLLI and MOLLI - implications for sample size calculation. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P2.                                                                                                | 3.3 | 4         |
| 94  | Chronic iron deposit and left ventricular remodeling in reperfused STEMI patients. Journal of<br>Cardiovascular Magnetic Resonance, 2016, 18, P230.                                                                                                                 | 3.3 | 1         |
| 95  | High-sensitivity Troponin-T levels in reperfused STEMI patients: A comparison with CMR. Journal of<br>Cardiovascular Magnetic Resonance, 2016, 18, P72.                                                                                                             | 3.3 | 0         |
| 96  | ECC, LVH and T1 changes in Fabry disease - implications for screening and understanding of the disease model. Journal of Cardiovascular Magnetic Resonance, 2016, 18, Q48.                                                                                          | 3.3 | 0         |
| 97  | Left ventricular remodeling after reperfused acute myocardial infarction: insights from automated<br>ECV mapping. Journal of Cardiovascular Magnetic Resonance, 2016, 18, Q67.                                                                                      | 3.3 | 0         |
| 98  | Reducing myocardial infarct size: challenges and future opportunities. Heart, 2016, 102, 341-348.                                                                                                                                                                   | 2.9 | 185       |
| 99  | Letter by Bulluck and Hausenloy Regarding Article, "Air Versus Oxygen in ST-Segment–Elevation<br>Myocardial Infarctionâ€: Circulation, 2016, 133, e28.                                                                                                              | 1.6 | 1         |
| 100 | Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy.<br>Heart, 2016, 102, 741-747.                                                                                                                                  | 2.9 | 88        |
| 101 | Automatic Measurement of the MyocardialÂInterstitium. JACC: Cardiovascular Imaging, 2016, 9, 54-63.                                                                                                                                                                 | 5.3 | 127       |
| 102 | Quantifying the Area at Risk in Reperfused ST-Segment–Elevation Myocardial Infarction Patients Using<br>Hybrid Cardiac Positron Emission Tomography–Magnetic Resonance Imaging. Circulation:<br>Cardiovascular Imaging, 2016, 9, e003900.                           | 2.6 | 54        |
| 103 | Remote Ischemic Preconditioning: Would You Give Your Right Arm to Protect Your Kidneys?. American<br>Journal of Kidney Diseases, 2016, 67, 16-19.                                                                                                                   | 1.9 | 2         |
| 104 | Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction<br>using cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 26.                                                             | 3.3 | 55        |
| 105 | Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 57.                                                               | 3.3 | 41        |
| 106 | Promising strategies to minimize reperfusion injury in STEMI. Minerva Cardioangiologica, 2016, 64, 284-94.                                                                                                                                                          | 1.2 | 1         |
| 107 | Mineralocorticoid Receptor Antagonist Pretreatment to <scp>MINIMISE</scp> Reperfusion Injury<br>After <scp>ST</scp> â€Elevation Myocardial Infarction (The <scp>MINIMISE STEMI</scp> Trial): Rationale<br>and Study Design. Clinical Cardiology, 2015, 38, 259-266. | 1.8 | 10        |
| 108 | Myocardial T1 Mapping. Circulation Journal, 2015, 79, 487-494.                                                                                                                                                                                                      | 1.6 | 69        |

| #   | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | 29â€Synthetic ECV – simplifying ECV quantification by deriving haematocrit from T1 blood. Heart, 2015,<br>101, A16.2-A17.                                                                                                                                                                      | 2.9 | 2         |
| 110 | T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 73.                                                                                                                                     | 3.3 | 70        |
| 111 | Journals: scientific input from the National SocietiesHand grip strength predicts myocardial<br>infarction and strokeEffect of remote ischaemic conditioning on clinical outcomes in patients<br>presenting with an ST-segment elevation myocardial infarction undergoing primary percutaneous | 2.2 | 29        |
| 112 | Microvascular Obstruction: The Bane of Myocardial Reperfusion. Revista Espanola De Cardiologia<br>(English Ed ), 2015, 68, 919-920.                                                                                                                                                            | 0.6 | 5         |
| 113 | Obstrucción microvascular: el azote de la reperfusión miocárdica. Revista Espanola De Cardiologia,<br>2015, 68, 919-920.                                                                                                                                                                       | 1.2 | 7         |
| 114 | Safety of short-term dual antiplatelet therapy after drug-eluting stents: An updated meta-analysis<br>with direct and adjusted indirect comparison of randomized control trials. International Journal of<br>Cardiology, 2015, 181, 331-339.                                                   | 1.7 | 20        |
| 115 | Ischaemic conditioning: are we there yet?. Heart, 2015, 101, 1067-1077.                                                                                                                                                                                                                        | 2.9 | 22        |
| 116 | LGE-PSIR is an independent predictor of mortality in cardiac amyloidosis: a 250 patient prospective study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O27.                                                                                                                        | 3.3 | 5         |
| 117 | Hybrid PET/MR metabolic imaging of the reperfused infarct - new biology, future directions. Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, O41.                                                                                                                                    | 3.3 | 1         |
| 118 | Clinical application of MOLLI T1* for extracellular volume calculation in healthy volunteers and aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                                                    | 3.3 | 0         |
| 119 | Incidence of left ventricular thrombi in reperfused STEMI patients detected by contrast-enhanced CMR. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                                                                | 3.3 | 0         |
| 120 | Myocardial iron quantification using T2* and native T1mapping - a 250 patient study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P312.                                                                                                                                             | 3.3 | 2         |
| 121 | Precision and reproducibility of blood T1 estimation: implications of T1 star on ECV calculation.<br>Journal of Cardiovascular Magnetic Resonance, 2015, 17, P4.                                                                                                                               | 3.3 | 0         |
| 122 | Performance of automated ECV maps versus conventionally calculated ECV. Journal of<br>Cardiovascular Magnetic Resonance, 2015, 17, P56.                                                                                                                                                        | 3.3 | 0         |
| 123 | Quantification of the area-at-risk by T1 and T2 mapping CMR at 3T. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P8.                                                                                                                                                                 | 3.3 | 0         |
| 124 | An instantaneous ECV with no blood sampling: using native blood T1 for hematocrit is as good as standard ECV. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                                                        | 3.3 | 2         |
| 125 | The Effect of Remote Ischemic Conditioning and Glyceryl Trinitrate on Perioperative Myocardial Injury<br>in Cardiac Bypass Surgery Patients: Rationale and Design of the <scp>ERICâ€GTN</scp> Study. Clinical<br>Cardiology, 2015, 38, 641-646.                                                | 1.8 | 13        |
| 126 | Remote Ischemic Conditioning Reduces Myocardial Infarct Size in STEMI Patients Treated by<br>Thrombolysis. Journal of the American College of Cardiology, 2015, 65, 2764-2765.                                                                                                                 | 2.8 | 77        |

| #   | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac<br>Amyloidosis. Circulation, 2015, 132, 1570-1579.                                                                                                                                         | 1.6  | 442       |
| 128 | Effect of remote ischaemic conditioning on clinical outcomes in patients presenting with an<br>ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.<br>European Heart Journal, 2015, 36, 1846-8.                                           | 2.2  | 59        |
| 129 | Benefits and Harms of Extending the Duration of Dual Antiplatelet Therapy after Percutaneous<br>Coronary Intervention with Drug-Eluting Stents: A Meta-Analysis. Scientific World Journal, The, 2014,<br>2014, 1-16.                                                                    | 2.1  | 10        |
| 130 | AL and ATTR cardiac amyloid are different: native T1 mapping and ECV detect different biology. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P341.                                                                                                                            | 3.3  | 11        |
| 131 | CMR detects a reduction in infarct size and myocardial edema when primary PCI is augmented by<br>Remote Ischemic Conditioning. A randomized trial. Journal of Cardiovascular Magnetic Resonance,<br>2014, 16, P208.                                                                     | 3.3  | 1         |
| 132 | A simple technique to measure TAPSE and MAPSE on CMR and normal values. Journal of<br>Cardiovascular Magnetic Resonance, 2014, 16, P22.                                                                                                                                                 | 3.3  | 6         |
| 133 | 045 PRIMARY PERCUTANEOUS CORONARY INTERVENTION FOR ST ELEVATION MYOCARDIAL INFARCTION:<br>DOES DIRECT STENTING IMPACT ON MORTALITY?. Heart, 2013, 99, A32.1-A32.                                                                                                                        | 2.9  | 0         |
| 134 | The aetiology of symptomatic gallstones quantification of the effects of obesity, alcohol and serum<br>lipids on risk. Epidemiological and biomarker data from a UK prospective cohort study (EPIC-Norfolk).<br>European Journal of Gastroenterology and Hepatology, 2011, 23, 733-740. | 1.6  | 53        |
| 135 | OC-030â€Serum lipids and the risk of developing symptomatic gallstones: a UK prospective cohort study.<br>Gut, 2010, 59, A12.3-A13.                                                                                                                                                     | 12.1 | Ο         |
| 136 | S1238 Serum Lipids and the Risk of Developing Symptomatic Gallstones: A UK Prospective Cohort Study.<br>Gastroenterology, 2010, 138, S-211.                                                                                                                                             | 1.3  | 0         |
| 137 | 14 Body Mass Index and the Risk of Symptomatic Gallstones - A Prospective Cohort Study in a UK Population. Gastroenterology, 2009, 136, A-1.                                                                                                                                            | 1.3  | 0         |
| 138 | 15 Alcohol Intake and Development of Symptomatic Gallstones: An Inverse Association - A UK<br>Prospective Cohort Study. Gastroenterology, 2009, 136, A-1.                                                                                                                               | 1.3  | 0         |