
Patrycja Sosińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3345898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines. Journal of Ovarian Research, 2016, 9, 65.	3.0	62
2	The double-edged sword of long non-coding RNA: The role of human brain-specific BC200 RNA in translational control, neurodegenerative diseases, and cancer. Mutation Research - Reviews in Mutation Research, 2015, 766, 58-67.	5.5	39
3	Senescent peritoneal mesothelium creates a niche for ovarian cancer metastases. Cell Death and Disease, 2016, 7, e2565-e2565.	6.3	39
4	Specificity of cytochemical and fluorescence methods of senescence-associated \hat{l}^2 -galactosidase detection for ageing driven by replication and time. Biogerontology, 2014, 15, 407-413.	3.9	36
5	Colorectal cancer-promoting activity of the senescent peritoneal mesothelium. Oncotarget, 2015, 6, 29178-29195.	1.8	36
6	Resveratrol inhibits ovarian cancer cell adhesion to peritoneal mesothelium in vitro by modulating the production of $\hat{I}\pm5\hat{I}^21$ integrins and hyaluronic acid. Gynecologic Oncology, 2014, 134, 624-630.	1.4	34
7	Senescent peritoneal mesothelium induces a pro-angiogenic phenotype in ovarian cancer cells in vitro and in a mouse xenograft model in vivo. Clinical and Experimental Metastasis, 2016, 33, 15-27.	3.3	34
8	Bystander senescence in human peritoneal mesothelium and fibroblasts is related to thrombospondin-1-dependent activation of transforming growth factor-β1. International Journal of Biochemistry and Cell Biology, 2013, 45, 2087-2096.	2.8	32
9	Peritoneal mesothelium promotes the progression of ovarian cancer cells in vitro and in a mice xenograft model in vivo. Cancer Letters, 2014, 355, 310-315.	7.2	27
10	Synthetic Resveratrol Analogue, 3,3',4,4',5,5'-Hexahydroxy-trans-Stilbene, Accelerates Senescence in Peritoneal Mesothelium and Promotes Senescence-Dependent Growth of Gastrointestinal Cancers. International Journal of Molecular Sciences, 2013, 14, 22483-22498.	4.1	19
11	High Potency of a Novel Resveratrol Derivative, 3,3′,4,4′-Tetrahydroxy- <i>trans</i> -stilbene, against Ovarian Cancer Is Associated with an Oxidative Stress-Mediated Imbalance between DNA Damage Accumulation and Repair. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-15.	4.0	19
12	Sulodexide Reduces the Proinflammatory Effect of Serum from Patients with Peripheral Artery Disease in Human Arterial Endothelial Cells. Cellular Physiology and Biochemistry, 2016, 40, 1005-1012.	1.6	17
13	Serum from Varicose Patients Induces Senescence-Related Dysfunction of Vascular Endothelium Generating Local and Systemic Proinflammatory Conditions. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	4.0	15
14	Effect of brefeldin A and castanospermine on resistant cell lines as supplements in anticancer therapy. Oncology Reports, 2016, 35, 2896-2906.	2.6	13
15	Resveratrol Derivative, 3,3′,4,4′-Tetrahydroxy- <i>trans</i> -Stilbene, Retards Senescence of Mesothelial Cells via Hormetic-Like Prooxidative Mechanism. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1169-1180.	3.6	12
16	Sulodexide Slows Down the Senescence of Aortic Endothelial Cells Exposed to Serum from Patients with Peripheral Artery Diseases. Cellular Physiology and Biochemistry, 2018, 45, 2225-2232.	1.6	11
17	COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21. International Journal of COPD, 2016, 11, 1061.	2.3	7
18	N-Acetylcysteine and Sulodexide Reduce the Prothrombotic Effect of Uremic Serum on the Venous Endothelial Cells, Kidney and Blood Pressure Research, 2019, 44, 277-285.	2.0	4

Patrycja Sosińska

#	Article	IF	CITATIONS
19	Uremic serum induces prothrombotic changes in venous endothelial cells and inflammatory changes in aortic endothelial cells. Renal Failure, 2021, 43, 401-405.	2.1	4
20	Prediction of secondary and tertiary structures of human BC200 RNA (BCYRN1) based on experimental and bioinformatic cross-validation. Biochemical Journal, 2018, 475, 2727-2748.	3.7	3
21	Higher Serum Hepatocyte Growth Factor Concentration is Associated with Better Preservation of GFR in Hemodialysis Patients. Kidney and Blood Pressure Research, 2017, 42, 1175-1182.	2.0	2
22	Endovenous Laser Ablation of Varicose Veins Preserves Biological Properties of Vascular Endothelium and Modulates Proinflammatory Agent Profile More Favorably Than Classic Vein Stripping. BioMed Research International, 2017, 2017, 1-8.	1.9	2
23	Different Effect of Hemodialysis on Function of Human Arterial and Venous Endothelial Cells. Blood Purification, 2019, 47, 346-350.	1.8	0