
Julius Chapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3345693/publications.pdf Version: 2024-02-01

ΙΠΠΠΕ CΗΛΟΙΡΟ

#	Article	IF	CITATIONS
1	Comparison of metabolic and immunologic responses to transarterial chemoembolization with different chemoembolic regimens in a rabbit VX2 liver tumor model. European Radiology, 2022, 32, 2437-2447.	2.3	9
2	Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Reports, 2022, 4, 100443.	2.6	60
3	Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach. Journal of Vascular and Interventional Radiology, 2022, 33, 324-332.e2.	0.2	2
4	Impact of Chemo-Embolic Regimen on Immune Cell Recruitment and Immune Checkpoint Marker Expression following Transcatheter Arterial Chemoembolization in a VX2 Rabbit Liver Tumor Model. Journal of Vascular and Interventional Radiology, 2022, , .	0.2	5
5	Translating artificial intelligence from code to bedside: The road towards Al-driven predictive biomarkers for immunotherapy of hepatocellular carcinoma. Journal of Hepatology, 2022, 77, 6-8.	1.8	1
6	MR Imaging Biomarkers for the Prediction of Outcome after Radiofrequency Ablation of Hepatocellular Carcinoma: Qualitative and Quantitative Assessments of the Liver Imaging Reporting and Data System and Radiomic Features. Journal of Vascular and Interventional Radiology, 2022, 33, 814-824.e3.	0.2	7
7	Optimization of the BCLC Staging System for Locoregional Therapy for Hepatocellular Carcinoma by Using Quantitative Tumor Burden Imaging Biomarkers at MRI. Radiology, 2022, 304, 228-237.	3.6	17
8	Intraarterial Therapies for the Management of Hepatocellular Carcinoma. Cancers, 2022, 14, 3351.	1.7	10
9	Response assessment methods for patients with hepatic metastasis from rare tumor primaries undergoing transarterial chemoembolization. Clinical Imaging, 2022, 89, 112-119.	0.8	1
10	Quantitative volumetric assessment of baseline enhancing tumor volume as an imaging biomarker predicts overall survival in patients with glioblastoma. Acta Radiologica, 2021, 62, 1200-1207.	0.5	6
11	Fibronodular hepatocellular carcinoma—a new variant of liver cancer: clinical, pathological and radiological correlation. Journal of Clinical Pathology, 2021, 74, 31-35.	1.0	8
12	Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdominal Radiology, 2021, 46, 216-225.	1.0	47
13	Prospective study of Lipiodol distribution as an imaging marker for doxorubicin pharmacokinetics during conventional transarterial chemoembolization of liver malignancies. European Radiology, 2021, 31, 3002-3014.	2.3	10
14	Reliable prediction of survival in advanced-stage hepatocellular carcinoma treated with sorafenib: comparing 1D and 3D quantitative tumor response criteria on MRI. European Radiology, 2021, 31, 2737-2746.	2.3	8
15	Deep learning–assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver. European Radiology, 2021, 31, 4981-4990.	2.3	36
16	Cost-Effectiveness of Imaging Tumor Response Criteria in Hepatocellular Cancer After Transarterial Chemoembolization. Journal of the American College of Radiology, 2021, 18, 927-934.	0.9	2
17	Elastin-specific MRI of extracellular matrix-remodelling following hepatic radiofrequency-ablation in a VX2 liver tumor model. Scientific Reports, 2021, 11, 6814.	1.6	1
18	Hepatic Radiofrequency Ablation. Investigative Radiology, 2021, 56, 591-598.	3.5	6

#	Article	IF	CITATIONS
19	Role of 3D quantitative tumor analysis for predicting overall survival after conventional chemoembolization of intrahepatic cholangiocarcinoma. Scientific Reports, 2021, 11, 9337.	1.6	6
20	Identifying enhancement-based staging markers on baseline MRI in patients with colorectal cancer liver metastases undergoing intra-arterial tumor therapy. European Radiology, 2021, 31, 8858-8867.	2.3	2
21	Use of Artificial Intelligence in Nononcologic Interventional Radiology: Current State and Future Directions. Digestive Disease Interventions, 2021, 05, 331-337.	0.3	4
22	Anatomy-guided multimodal registration by learning segmentation without ground truth: Application to intraprocedural CBCT/MR liver segmentation and registration. Medical Image Analysis, 2021, 71, 102041.	7.0	36
23	Thermal ablation alone vs thermal ablation combined with transarterial chemoembolization for patients with small (<3Âcm) hepatocellular carcinoma. Clinical Imaging, 2021, 76, 123-129.	0.8	4
24	Consensus Guidelines for the Definition of Time-to-Event End Points in Image-guided Tumor Ablation: Results of the SIO and DATECAN Initiative. Radiology, 2021, 301, 533-540.	3.6	72
25	How COVID-19 kick-started online learning in medical education—The DigiMed study. PLoS ONE, 2021, 16, e0257394.	1.1	74
26	Lipiodol as an intra-procedural imaging biomarker for liver tumor response to transarterial chemoembolization: Post-hoc analysis of a prospective clinical trial. Clinical Imaging, 2021, 78, 194-200.	0.8	9
27	Comparison of Drug-Eluting Embolics versus Conventional Transarterial Chemoembolization for the Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Cost-Effectiveness Analysis. Journal of Vascular and Interventional Radiology, 2021, 32, 2-12.e1.	0.2	5
28	Lipiodol Deposition and Washout in Primary and Metastatic Liver Tumors After Chemoembolization. In Vivo, 2021, 35, 3261-3270.	0.6	9
29	Machine Learning–Based Surveillance Strategy after Complete Ablation of Initially Recurrent Hepatocellular Carcinoma: Worth the Risk?. Journal of Vascular and Interventional Radiology, 2021, 32, 1558-1559.	0.2	0
30	Longitudinal Analysis of the Effect of Repeated Transarterial Chemoembolization for Liver Cancer on Portal Venous Pressure. Frontiers in Oncology, 2021, 11, 639235.	1.3	0
31	Improved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging. PLoS ONE, 2021, 16, e0260630.	1.1	5
32	Quantitative MRI for Assessment of Treatment Outcomes in a Rabbit VX2 Hepatic Tumor Model. Journal of Magnetic Resonance Imaging, 2020, 52, 668-685.	1.9	9
33	Extracellular pH mapping of liver cancer on a clinical 3T MRI scanner. Magnetic Resonance in Medicine, 2020, 83, 1553-1564.	1.9	30
34	Prostatic Artery Embolization in Nonindex Benign Prostatic Hyperplasia Patients: Single-center Outcomes for Urinary Retention and Gross Prostatic Hematuria. Urology, 2020, 136, 212-217.	0.5	18
35	Comparing HCC arterial tumour vascularisation on baseline imaging and after lipiodol cTACE: how do estimations of enhancing tumour volumes differ on contrast-enhanced MR and CT?. European Radiology, 2020, 30, 1601-1608.	2.3	8
36	Prostatic Artery Embolization Using 100–300-μm Trisacryl Gelatin Microspheres to Treat Lower Urinary Tract Symptoms Attributable to Benign Prostatic Hyperplasia: A Single-Center Outcomes Analysis with Medium-Term Follow-up. Journal of Vascular and Interventional Radiology, 2020, 31, 99-107.	0.2	16

#	Article	IF	CITATIONS
37	Supervised Machine Learning in Oncology: A Clinician's Guide. Digestive Disease Interventions, 2020, 04, 073-081.	0.3	14
38	Automated feature quantification of Lipiodol as imaging biomarker to predict therapeutic efficacy of conventional transarterial chemoembolization of liver cancer. Scientific Reports, 2020, 10, 18026.	1.6	8
39	Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as predictors of tumor response in hepatocellular carcinoma after DEB-TACE. European Radiology, 2020, 30, 5663-5673.	2.3	62
40	Quantification of contrast-uptake as imaging biomarker for disease progression of renal cell carcinoma after tumor ablation. Acta Radiologica, 2020, 61, 1708-1716.	0.5	0
41	Molecular MRI of the Immuno-Metabolic Interplay in a Rabbit Liver Tumor Model: A Biomarker for Resistance Mechanisms in Tumor-targeted Therapy?. Radiology, 2020, 296, 575-583.	3.6	19
42	Lipiodol as an Imaging Biomarker of Tumor Response After Conventional Transarterial Chemoembolization: Prospective Clinical Validation in Patients with Primary and Secondary Liver Cancer. Translational Oncology, 2020, 13, 100742.	1.7	20
43	Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment. Clinical Cancer Research, 2020, 26, 428-438.	3.2	34
44	Idarubicin-Loaded ONCOZENE Drug-Eluting Bead Chemoembolization in a Rabbit Liver Tumor Model: Investigating Safety, Therapeutic Efficacy, and Effects on Tumor Microenvironment. Journal of Vascular and Interventional Radiology, 2020, 31, 1706-1716.e1.	0.2	9
45	Predicting Infiltrative Hepatocellular Carcinoma Patient Outcome Post-TACE: MR Bias Field Correction Effect on 3D-quantitative Image Analysis. Journal of Clinical and Translational Hepatology, 2020, 8, 1-7.	0.7	2
46	Therapy of Intermediate-Stage Hepatocellular Carcinoma: Current Evidence and Clinical Practice. Seminars in Interventional Radiology, 2020, 37, 456-465.	0.3	5
47	Case-Control Comparison of Conventional End-Hole versus Balloon-Occlusion Microcatheter Prostatic Artery Embolization for Treatment of Symptomatic Benign Prostatic Hyperplasia. Journal of Vascular and Interventional Radiology, 2019, 30, 1459-1470.	0.2	15
48	Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model. Theranostics, 2019, 9, 3674-3686.	4.6	28
49	From Code to Bedside: Introducing Predictive Intelligence to Interventional Oncology. Radiology: Artificial Intelligence, 2019, 1, e190139.	3.0	1
50	Quantitative Imaging Biomarkers for 90Y Distribution on Bremsstrahlung SPECT After Resin-Based Radioembolization. Journal of Nuclear Medicine, 2019, 60, 1066-1072.	2.8	10
51	Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. European Radiology, 2019, 29, 3348-3357.	2.3	112
52	Immunotherapy and the Interventional Oncologist: Challenges and Opportunities—A Society of Interventional Oncology White Paper. Radiology, 2019, 292, 25-34.	3.6	57
53	Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. European Radiology, 2019, 29, 3338-3347.	2.3	204
54	A 3D quantitative imaging biomarker in pre-treatment MRI predicts overall survival after stereotactic radiation therapy of patients with a singular brain metastasis. Acta Radiologica, 2019, 60, 1496-1503.	0.5	17

#	Article	IF	CITATIONS
55	Domain-Agnostic Learning With Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation. , 2019, 2019, .		9

 $_{56}$ Fluorodeoxyglucose PET for Monitoring Response to Embolotherapy (Transarterial) Tj ETQq0 0 0 rgBT /Overlock $10_{1.5}$ 50 702 Td (Chemos

57	The Role of Artificial Intelligence in Interventional Oncology: A Primer. Journal of Vascular and Interventional Radiology, 2019, 30, 38-41.e1.	0.2	30
58	Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation. Lecture Notes in Computer Science, 2019, 11765, 255-263.	1.0	77
59	Interventional oncology: aiming globally to be the 4th pillar of cancer care. Chinese Clinical Oncology, 2019, 8, 56-56.	0.4	2
60	Clinical Experience with Real-Time 3-D Guidance Based on C-Arm-Acquired Cone-Beam CT (CBCT) in Transjugular Intrahepatic Portosystemic Stent Shunt (TIPSS) Placement. CardioVascular and Interventional Radiology, 2018, 41, 1035-1042.	0.9	8
61	Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning—An Artificial Intelligence Concept. Journal of Vascular and Interventional Radiology, 2018, 29, 850-857.e1.	0.2	124
62	Characteristics of a New X-Ray Imaging System for Interventional Procedures: Improved Image Quality and Reduced Radiation Dose. CardioVascular and Interventional Radiology, 2018, 41, 502-508.	0.9	10
63	C-Arm Cone Beam CT for Intraprocedural Image Fusion and 3D Guidance in Portal Vein Embolization (PVE). CardioVascular and Interventional Radiology, 2018, 41, 424-432.	0.9	6
64	Predicting Treatment Response to Image-Guided Therapies Using Machine Learning: An Example for Trans-Arterial Treatment of Hepatocellular Carcinoma. Journal of Visualized Experiments, 2018, , .	0.2	10
65	lrinotecan-Eluting 75–150-μm Embolics Lobar Chemoembolization in Patients with Colorectal Cancer Liver Metastases: A Prospective Single-Center Phase I Study. Journal of Vascular and Interventional Radiology, 2018, 29, 1646-1653.e5.	0.2	12
66	Liver Tissue Classification Using an Auto-context-based Deep Neural Network with a Multi-phase Training Framework. Lecture Notes in Computer Science, 2018, 11075, 59-66.	1.0	17
67	Advanced-stage hepatocellular carcinoma with portal vein thrombosis: conventional versus drug-eluting beads transcatheter arterial chemoembolization. European Radiology, 2017, 27, 526-535.	2.3	54
68	Intra-arterial therapies for liver cancer: assessing tumor response. Expert Review of Anticancer Therapy, 2017, 17, 119-127.	1.1	11
69	Liver Tissue Classification in Patients with Hepatocellular Carcinoma by Fusing Structured and Rotationally Invariant Context Representation. Lecture Notes in Computer Science, 2017, 10435, 81-88.	1.0	3
70	Diagnostic Accuracy of Split-Bolus Single-Phase Contrast-Enhanced Cone-Beam CT for the Detection of Liver Tumors before Transarterial Chemoembolization. Journal of Vascular and Interventional Radiology, 2017, 28, 1378-1385.	0.2	9
71	The impact of antiangiogenic therapy combined with Transarterial Chemoembolization on enhancement based quantitative tumor response assessment in patients with hepatocellular carcinoma. Clinical Imaging, 2017, 46, 1-7.	0.8	6
72	Intra-arterial therapy of neuroendocrine tumour liver metastases: comparing conventional TACE, drug-eluting beads TACE and yttrium-90 radioembolisation as treatment options using a propensity score analysis model. European Radiology, 2017, 27, 4995-5005.	2.3	54

#	Article	IF	CITATIONS
73	Imaging Biomarkers of Tumor Response in Neuroendocrine Liver Metastases Treated with Transarterial Chemoembolization: Can Enhancing Tumor Burden of the Whole Liver Help Predict Patient Survival?. Radiology, 2017, 283, 883-894.	3.6	38
74	Validation of the Hong Kong Liver Cancer Staging System in Determining Prognosis of the North American Patients Following Intra-arterial Therapy. Clinical Gastroenterology and Hepatology, 2017, 15, 746-755.e4.	2.4	33
75	Preclinical Benefit of Hypoxia-Activated Intra-arterial Therapy with Evofosfamide in Liver Cancer. Clinical Cancer Research, 2017, 23, 536-548.	3.2	27
76	Intra-arterial embolotherapy for intrahepatic cholangiocarcinoma: update and future prospects. Hepatobiliary Surgery and Nutrition, 2017, 6, 7-21.	0.7	40
77	Transarterial Chemoembolization for the Treatment of Advanced-Stage Hepatocellular Carcinoma. Journal of Gastrointestinal Surgery, 2016, 20, 2002-2009.	0.9	27
78	Renal Cell Carcinoma Metastatic to the Liver: Early Response Assessment after Intraarterial Therapy Using 3D Quantitative Tumor Enhancement Analysis. Translational Oncology, 2016, 9, 377-383.	1.7	10
79	Improved Visibility of Metastatic Disease in the Liver During Intra-Arterial Therapy Using Delayed Arterial Phase Cone-Beam CT. CardioVascular and Interventional Radiology, 2016, 39, 1429-1437.	0.9	18
80	Interventional Oncology in Hepatocellular Carcinoma. Cancer Journal (Sudbury, Mass), 2016, 22, 365-372.	1.0	5
81	From the Guest Editor. Cancer Journal (Sudbury, Mass), 2016, 22, 363-364.	1.0	18
82	Multimodality Imaging of Ethiodized Oil–loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors. Radiology, 2016, 279, 741-753.	3.6	22
83	3D Quantitative tumour burden analysis in patients with hepatocellular carcinoma before TACE: comparing single-lesion vs. multi-lesion imaging biomarkers as predictors of patient survival. European Radiology, 2016, 26, 3243-3252.	2.3	24
84	Automatic bone removal for 3D TACE planning with C-arm CBCT: Evaluation of technical feasibility. Minimally Invasive Therapy and Allied Technologies, 2016, 25, 162-170.	0.6	2
85	Targeting glucose metabolism in cancer: a new class of agents for loco-regional and systemic therapy of liver cancer and beyond?. Hepatic Oncology, 2016, 3, 19-28.	4.2	23
86	Comparison of Existing Response Criteria in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization Using a 3D Quantitative Approach. Radiology, 2016, 278, 275-284.	3.6	85
87	Radiologic-pathologic analysis of quantitative 3D tumour enhancement on contrast-enhanced MR imaging: a study of ROI placement. European Radiology, 2016, 26, 103-113.	2.3	26
88	Identifying Staging Markers for Hepatocellular Carcinoma before Transarterial Chemoembolization: Comparison of Three-dimensional Quantitative versus Non–three-dimensional Imaging Markers. Radiology, 2015, 275, 438-447.	3.6	48
89	Assessing tumor response after loco-regional liver cancer therapies: the role of 3D MRI. Expert Review of Anticancer Therapy, 2015, 15, 199-205.	1.1	33
90	Transarterial chemoembolization in soft-tissue sarcoma metastases to the liver – The use of imaging biomarkers as predictors of patient survival. European Journal of Radiology, 2015, 84, 424-430.	1.2	40

#	Article	IF	CITATIONS
91	How I Do It. Academic Radiology, 2015, 22, 527-533.	1.3	16
92	Early survival prediction after intra-arterial therapies: a 3D quantitative MRI assessment of tumour response after TACE or radioembolization of colorectal cancer metastases to the liver. European Radiology, 2015, 25, 1993-2003.	2.3	58
93	Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization. CardioVascular and Interventional Radiology, 2015, 38, 929-936.	0.9	20
94	Three-Dimensional Quantitative Assessment of Lesion Response to MR-guided High-Intensity Focused Ultrasound Treatment of Uterine Fibroids. Academic Radiology, 2015, 22, 1199-1205.	1.3	6
95	A new angiographic imaging platform reduces radiation exposure for patients with liver cancer treated with transarterial chemoembolization. European Radiology, 2015, 25, 3255-3262.	2.3	42
96	Three-Dimensional Quantitative Assessment of Uterine Fibroid Response after Uterine Artery Embolization Using Contrast-Enhanced MR Imaging. Journal of Vascular and Interventional Radiology, 2015, 26, 670-678.e2.	0.2	10
97	Multimodality 3D Tumor Segmentation in HCC Patients Treated with TACE. Academic Radiology, 2015, 22, 840-845.	1.3	16
98	Feasibility of a Modified Cone-Beam CT Rotation Trajectory to Improve Liver Periphery Visualization during Transarterial Chemoembolization. Radiology, 2015, 277, 833-841.	3.6	13
99	Intraprocedural 3D Quantification of Lipiodol Deposition on Cone-Beam CT Predicts Tumor Response After Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. CardioVascular and Interventional Radiology, 2015, 38, 1548-1556.	0.9	37
100	Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis. Radiology, 2014, 273, 746-758.	3.6	98
101	Have we finally found the ultimate staging system for HCC?. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 334-336.	8.2	32
102	Three-dimensional Evaluation of Lipiodol Retention in HCC after Chemoembolization. Academic Radiology, 2014, 21, 393-399.	1.3	33
103	Uveal Melanoma Metastatic to the Liver: The Role of Quantitative Volumetric Contrast-Enhanced MR Imaging in the Assessment of Early Tumor Response after Transarterial Chemoembolization. Translational Oncology, 2014, 7, 447-455.	1.7	41
104	Systemic Delivery of Microencapsulated 3-Bromopyruvate for the Therapy of Pancreatic Cancer. Clinical Cancer Research, 2014, 20, 6406-6417.	3.2	47
105	Combination of intra-arterial therapies and sorafenib: Is there a clinical benefit?. Radiologia Medica, 2014, 119, 476-482.	4.7	7
106	Intraarterial therapies for primary liver cancer: state of the art. Expert Review of Anticancer Therapy, 2013, 13, 1157-1167.	1.1	12
107	Percutaneous therapies of hepatocellular carcinoma-an update. Chinese Clinical Oncology, 2013, 2, 36.	0.4	3