Paolo Balestra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3345474/publications.pdf

Version: 2024-02-01

1684188 1281871 14 141 5 11 citations h-index g-index papers 16 16 16 85 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Generation of localized reactor point kinetics parameters using coupled neutronic and thermal fluid models for pebble-bed reactor transient analysis. Annals of Nuclear Energy, 2022, 174, 109143.	1.8	7
2	Pronghorn: A Multidimensional Coarse-Mesh Application for Advanced Reactor Thermal Hydraulics. Nuclear Technology, 2021, 207, 1015-1046.	1.2	30
3	Rattlesnake: A MOOSE-Based Multiphysics Multischeme Radiation Transport Application. Nuclear Technology, 2021, 207, 1047-1072.	1.2	30
4	Multiscale thermal-hydraulic modeling of the pebble bed fluoride-salt-cooled high-temperature reactor. Annals of Nuclear Energy, 2021, 154, 107968.	1.8	14
5	Improved natural convection heat transfer correlations for reactor cavity cooling systems of high-temperature gas-cooled reactors: From computational fluid dynamics to Pronghorn. Annals of Nuclear Energy, 2021, 163, 108547.	1.8	4
6	A workflow leveraging MOOSE transient multiphysics simulations to evaluate the impact of thermophysical property uncertainties on molten-salt reactors. Annals of Nuclear Energy, 2021, 163, 108546.	1.8	7
7	PBMR-400 BENCHMARK SOLUTION OF EXERCISE 1 AND 2 USING THE MOOSE BASED APPLICATIONS: MAMMOTH, PRONGHORN. EPJ Web of Conferences, 2021, 247, 06020.	0.3	5
8	Comparison of Pebble Bed Velocity Profiles Between High-Fidelity and Intermediate-Fidelity Codes., 2021,,.		O
9	Preliminary design and analysis of Liquid Fuel Molten Salt Reactor using multi-physics code GeN-Foam. Nuclear Engineering and Design, 2020, 369, 110826.	1.7	9
10	Modular high temperature gas reactor core modeling with RELAP5-3D/PHISICS – Optimization schemes for load following. Nuclear Engineering and Design, 2020, 362, 110526.	1.7	4
11	Coupled Multiphysics Simulation of Pool-Type Molten Salt Reactors Using Griffin/Pronghorn. , 2020, ,		2
12	New RELAP5-3D Lead and LBE Thermophysical Properties Implementation for Safety Analysis of Gen IV Reactors. Science and Technology of Nuclear Installations, 2016, 2016, 1-15.	0.8	20
13	Simulation of AER-DYN-002 and AER-DYN-003 Control Rod Ejection Benchmarks by RELAP5-3D/PHISICS Coupled Codes. Nuclear Technology, 2016, 193, 175-182.	1.2	4
14	Effects of cross sections library parameters on the OECD/NEA Oskarshamn-2 benchmark solution. Annals of Nuclear Energy, 2015, 85, 643-651.	1.8	0