Gianluca Milano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3345445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nature Materials, 2022, 21, 195-202.	13.3	180
2	2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2022, 2, 022501.	2.8	217
3	Grid-graph modeling of emergent neuromorphic dynamics and heterosynaptic plasticity in memristive nanonetworks. Neuromorphic Computing and Engineering, 2022, 2, 014007.	2.8	10
4	Memristive devices based on single ZnO nanowires—from material synthesis to neuromorphic functionalities. Semiconductor Science and Technology, 2022, 37, 034002.	1.0	7
5	In Materia Should Be Used Instead of In Materio. Frontiers in Nanotechnology, 2022, 4, .	2.4	4
6	Connectome of memristive nanowire networks through graph theory. Neural Networks, 2022, 150, 137-148.	3.3	19
7	Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials, 2022, 34, e2201248.	11.1	31
8	Metal–insulator transition in single crystalline ZnO nanowires. Nanotechnology, 2021, 32, 185202.	1.3	8
9	Recent Advances in Sequential Infiltration Synthesis (SIS) of Block Copolymers (BCPs). Nanomaterials, 2021, 11, 994.	1.9	18
10	Recommended implementation of electrical resistance tomography for conductivity mapping of metallic nanowire networks using voltage excitation. Scientific Reports, 2021, 11, 13167.	1.6	9
11	Structureâ€Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films. Advanced Materials Interfaces, 2021, 8, 2100915.	1.9	13
12	Water-Mediated Ionic Migration in Memristive Nanowires with a Tunable Resistive Switching Mechanism. ACS Applied Materials & amp; Interfaces, 2020, 12, 48773-48780.	4.0	23
13	Modeling of Short-Term Synaptic Plasticity Effects in ZnO Nanowire-Based Memristors Using a Potentiation-Depression Rate Balance Equation. IEEE Nanotechnology Magazine, 2020, 19, 609-612.	1.1	20
14	Mapping Time-Dependent Conductivity of Metallic Nanowire Networks by Electrical Resistance Tomography toward Transparent Conductive Materials. ACS Applied Nano Materials, 2020, 3, 11987-11997.	2.4	17
15	Brainâ€Inspired Structural Plasticity through Reweighting and Rewiring in Multiâ€Terminal Selfâ€Organizing Memristive Nanowire Networks. Advanced Intelligent Systems, 2020, 2, 2080071.	3.3	4
16	Hydrothermally grown ZnO nanowire array as an oxygen vacancies reservoir for improved resistive switching. Nanotechnology, 2020, 31, 374001.	1.3	14
17	Brainâ€Inspired Structural Plasticity through Reweighting and Rewiring in Multiâ€Terminal Selfâ€Organizing Memristive Nanowire Networks. Advanced Intelligent Systems, 2020, 2, 2000096.	3.3	72
18	TEM Nanostructural Investigation of Ag-Conductive Filaments in Polycrystalline ZnO-Based Resistive Switching Devices. ACS Applied Materials & Interfaces, 2020, 12, 29451-29460.	4.0	27

GIANLUCA MILANO

#	Article	IF	CITATIONS
19	Compact Modeling of the I-V Characteristics of ZnO Nanowires Including Nonlinear Series Resistance Effects. IEEE Nanotechnology Magazine, 2020, 19, 297-300.	1.1	13
20	Memristive Devices for Quantum Metrology. Advanced Quantum Technologies, 2020, 3, 2000009.	1.8	6
21	Ionic Modulation of Electrical Conductivity of ZnO Due to Ambient Moisture. Advanced Materials Interfaces, 2019, 6, 1900803.	1.9	22
22	Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: general discussion. Faraday Discussions, 2019, 213, 115-150.	1.6	5
23	Recent Developments and Perspectives for Memristive Devices Based on Metal Oxide Nanowires. Advanced Electronic Materials, 2019, 5, 1800909.	2.6	94
24	Junction properties of single ZnO nanowires with asymmetrical Pt and Cu contacts. Nanotechnology, 2019, 30, 244001.	1.3	18
25	Resistive switching in sub-micrometric ZnO polycrystalline films. Nanotechnology, 2019, 30, 065707.	1.3	17
26	Tuning ZnO Nanowire Dissolution by Electron Beam Modification of Surface Wetting Properties. Journal of Physical Chemistry C, 2018, 122, 8011-8021.	1.5	23
27	Unravelling Resistive Switching Mechanism in ZnO NW Arrays: The Role of the Polycrystalline Base Layer. Journal of Physical Chemistry C, 2018, 122, 866-874.	1.5	34
28	Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nature Communications, 2018, 9, 5151.	5.8	115
29	A multi-level memristor based on atomic layer deposition of iron oxide. Nanotechnology, 2018, 29, 495201.	1.3	26
30	Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states. Journal of Materials Chemistry C, 2017, 5, 10517-10523.	2.7	40
31	Kinetics of defect formation in chemically vapor deposited (CVD) graphene during laser irradiation: The case of Raman investigation. Nano Research, 2015, 8, 3972-3981.	5.8	20
32	Temperature study of CVD graphene on Cu thin films: competition between C catalysis and Cu dewetting. Materials Research Society Symposia Proceedings, 2014, 1658, 94.	0.1	0