Gregory Scherrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3345387/publications.pdf

Version: 2024-02-01

136950 254184 7,695 45 32 43 citations h-index g-index papers 50 50 50 9270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sympathetic yet painful: Autonomic innervation drives cluster firing of somatosensory neurons. Neuron, 2022, 110, 175-177.	8.1	1
2	Hyperexcitable arousal circuits drive sleep instability during aging. Science, 2022, 375, eabh3021.	12.6	74
3	Delta opioid receptor regulation of calcitonin gene–related peptide dynamics in the trigeminal complex. Pain, 2021, 162, 2297-2308.	4.2	14
4	A modulator-bound GPCR structure enables allosteric non-opioid analgesia. Nature Structural and Molecular Biology, 2021, 28, 871-872.	8.2	0
5	Brain circuits for pain and its treatment. Science Translational Medicine, 2021, 13, eabj7360.	12.4	65
6	Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. Journal of Experimental Medicine, 2020, 217, .	8.5	61
7	Targeting Morphine-Responsive Neurons: Generation of a Knock-In Mouse Line Expressing Cre Recombinase from the Mu-Opioid Receptor Gene Locus. ENeuro, 2020, 7, ENEURO.0433-19.2020.	1.9	27
8	Countering opioid side effects. Science, 2019, 365, 1246-1247.	12.6	1
9	An amygdalar neural ensemble that encodes the unpleasantness of pain. Science, 2019, 363, 276-281.	12.6	246
10	Synapse-specific opioid modulation of thalamo-cortico-striatal circuits. ELife, 2019, 8, .	6.0	49
11	Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits. Neuron, 2018, 98, 90-108.e5.	8.1	118
12	Kappa Opioid Receptor Distribution and Function in Primary Afferents. Neuron, 2018, 99, 1274-1288.e6.	8.1	100
13	Endogenous and Exogenous Opioids in Pain. Annual Review of Neuroscience, 2018, 41, 453-473.	10.7	260
14	Optical Activation of TrkA Signaling. ACS Synthetic Biology, 2018, 7, 1685-1693.	3.8	40
15	Beware of Undertow: Opioid Drugs Generate Additional Waves of Intracellular Signaling. Neuron, 2018, 98, 870-872.	8.1	3
16	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron, 2017, 93, 822-839.e6.	8.1	250
17	Loss of $\hat{1}\frac{1}{4}$ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nature Medicine, 2017, 23, 164-173.	30.7	286
18	Inhibition Mediated by Glycinergic and GABAergic Receptors on Excitatory Neurons in Mouse Superficial Dorsal Horn Is Location-Specific but Modified by Inflammation. Journal of Neuroscience, 2017, 37, 2336-2348.	3.6	51

#	Article	IF	Citations
19	Delta Opioid Receptor Expression and Function in Primary Afferent Somatosensory Neurons. Handbook of Experimental Pharmacology, 2017, 247, 87-114.	1.8	15
20	Ensuring transparency and minimization of methodologic bias in preclinical pain research. Pain, 2016, 157, 901-909.	4.2	70
21	Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537, 185-190.	27.8	744
22	InÂVivo Interrogation of Spinal Mechanosensory Circuits. Cell Reports, 2016, 17, 1699-1710.	6.4	62
23	Enhanced Dendritic Integration by Ih Reduction in the Anterior Cingulate Cortex Increases Nociception. Neuron, 2015, 86, 4-6.	8.1	3
24	Input- and Cell-Type-Specific Endocannabinoid-Dependent LTD in the Striatum. Cell Reports, 2015, 10, 75-87.	6.4	101
25	Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization. Journal of Neuroscience, 2015, 35, 11682-11693.	3.6	56
26	Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures. Behavioural Brain Research, 2015, 278, 429-434.	2.2	60
27	A Novel Anxiogenic Role for the Delta Opioid Receptor Expressed in GABAergic Forebrain Neurons. Biological Psychiatry, 2015, 77, 404-415.	1.3	31
28	A mu–delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Structure and Function, 2015, 220, 677-702.	2.3	227
29	In Vivo Techniques to Investigate the Internalization Profile of Opioid Receptors. Methods in Molecular Biology, 2015, 1230, 87-104.	0.9	8
30	The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration. BMC Genomics, 2014, 15, 345.	2.8	22
31	Sensory Biology: It Takes Piezo2 toÂTango. Current Biology, 2014, 24, R566-R569.	3.9	9
32	GINIP, a G $\hat{l}\pm i$ -Interacting Protein, Functions as a Key Modulator of Peripheral GABA B Receptor-Mediated Analgesia. Neuron, 2014, 84, 123-136.	8.1	49
33	Delta Opioid Receptors Presynaptically Regulate Cutaneous Mechanosensory Neuron Input to the Spinal Cord Dorsal Horn. Neuron, 2014, 81, 1312-1327.	8.1	127
34	Pre―and postsynaptic inhibitory control in the spinal cord dorsal horn. Annals of the New York Academy of Sciences, 2013, 1279, 90-96.	3.8	81
35	Impaired Hippocampus-Dependent and Facilitated Striatum-Dependent Behaviors in Mice Lacking the Delta Opioid Receptor. Neuropsychopharmacology, 2013, 38, 1050-1059.	5.4	49
36	<i>In Vivo</i> Visualization of Delta Opioid Receptors upon Physiological Activation Uncovers a Distinct Internalization Profile. Journal of Neuroscience, 2012, 32, 7301-7310.	3.6	39

#	Article	IF	CITATIONS
37	Localization and Regulation of Fluorescently Labeled Delta Opioid Receptor, Expressed in Enteric Neurons of Mice. Gastroenterology, 2011, 141, 982-991.e8.	1.3	58
38	Behavioral indices of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced mechanical hypersensitivity. Pain, 2011, 152, 990-1000.	4.2	154
39	A New Approach to Visualize Endogenously Expressed G Protein-Coupled Receptors in Tissues and Living Cells. Neuromethods, 2011, , 105-131.	0.3	0
40	VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22296-22301.	7.1	98
41	In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists. PLoS ONE, 2009, 4, e5425.	2.5	159
42	Dissociation of the Opioid Receptor Mechanisms that Control Mechanical and Heat Pain. Cell, 2009, 137, 1148-1159.	28.9	410
43	Cellular and Molecular Mechanisms of Pain. Cell, 2009, 139, 267-284.	28.9	3,090
44	Knockin mice expressing fluorescent \hat{A} -opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9691-9696.	7.1	230
45	The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. European Journal of Neuroscience, 2004, 19, 2239-2248.	2.6	73