Xin-Ming Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3344695/xin-ming-wang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,630 67 431 112 h-index g-index citations papers 19,964 6.7 6.7 556 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
431	The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. <i>Geoscientific Model Development</i> , 2012 , 5, 1471-1492	6.3	1751
430	Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 5307-5317	5.3	463
429	The health effects of ambient PM2.5 and potential mechanisms. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 128, 67-74	7	379
428	Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 948-954	3.9	361
427	Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. <i>Chemosphere</i> , 2003 , 52, 1411-22	8.4	332
426	Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. <i>Environment International</i> , 2013 , 54, 100-11	12.9	329
425	Volatile organic compounds in 43 Chinese cities. <i>Atmospheric Environment</i> , 2005 , 39, 5979-5990	5.3	282
424	Air pollution and control action in Beijing. <i>Journal of Cleaner Production</i> , 2016 , 112, 1519-1527	10.3	236
423	Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. <i>Chemosphere</i> , 2002 , 48, 375-82	8.4	228
422	Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 168, 47-52	4.7	225
421	Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 1190-6	10.3	205
420	Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatial distribution and source identification. <i>Atmospheric Environment</i> , 2007 , 41, 2061-2072	5 ·3	166
419	Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 3500-3506	3.3	156
418	Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea+KMnO4 solution. <i>Fuel Processing Technology</i> , 2013 , 106, 645-653	7.2	153
4 ¹ 7	Variations of ground-level O₃ and its precursors in Beijing in summertime between 2005 and 2011. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6089-6101	6.8	148
416	Seasonal variations and chemical characteristics of PM(2.5) in Wuhan, central China. <i>Science of the Total Environment</i> , 2015 , 518-519, 97-105	10.2	136
415	Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People's Republic of China. <i>Atmospheric Environment</i> , 2002 , 36, 5141-5148	5.3	133

(2011-2008)

414	Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. <i>Atmospheric Environment</i> , 2008 , 42, 4747-4754	5.3	125
413	Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States. <i>Environmental Science & Environmental Env</i>	10.3	125
412	Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		121
411	The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China. <i>Atmospheric Environment</i> , 2010 , 44, 4440-4445	5.3	119
410	Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. <i>Atmospheric Environment</i> , 2011 , 45, 3447-3453	5.3	116
409	Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China. <i>Chemosphere</i> , 2003 , 51, 1015-22	8.4	116
408	Observations of atmospheric mercury in China: a critical review. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 9455-9476	6.8	112
407	Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. <i>Science of the Total Environment</i> , 2013 , 456-457, 127-36	10.2	108
406	Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: contrasting local- and regional-scale haze events. <i>Environmental Science & Environmental Science</i>	10.3	104
405	The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China. <i>Atmospheric Environment</i> , 2011 , 45, 1303-1311	5.3	104
404	Ambient levels of carbonyl compounds and their sources in Guangzhou, China. <i>Atmospheric Environment</i> , 2005 , 39, 1789-1800	5.3	101
403	An estimation of CO 2 emission via agricultural crop residue open field burning in China from 1996 to 2013. <i>Journal of Cleaner Production</i> , 2016 , 112, 2625-2631	10.3	99
402	Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at trace levels in water samples. <i>Analytica Chimica Acta</i> , 2006 , 572, 165-71	6.6	99
401	The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, 1137-1155	6.1	98
400	Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China. <i>Atmospheric Environment</i> , 2011 , 45, 1817-1829	5.3	97
399	Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China. <i>Atmospheric Environment</i> , 2004 , 38, 6177-6184	5.3	97
398	Novel preparation of nanosized ZnOBnO2 with high photocatalytic activity by homogeneous co-precipitation method. <i>Materials Letters</i> , 2005 , 59, 3641-3644	3.3	97
397	Characterization and source apportionment of water-soluble organic matter in atmospheric fine particles (PM2.5) with high-resolution aerosol mass spectrometry and GC-MS. <i>Environmental Science & Environmental Science & Env</i>	10.3	96

396	Polybrominated diphenyl ethers in airborne particulates collected during a research expedition from the Bohai Sea to the Arctic. <i>Environmental Science & Environmental Scienc</i>	10.3	96
395	Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China. <i>Journal of Geophysical Research</i> , 2006 , 111,		95
394	Improved single-drop microextraction for high sensitive analysis. <i>Journal of Chromatography A</i> , 2007 , 1139, 7-13	4.5	92
393	Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. <i>Atmospheric Environment</i> , 2002 , 36, 2039-2047	5.3	92
392	Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. <i>Atmospheric Environment</i> , 2010 , 44, 5065-5071	5.3	89
391	Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. <i>Journal of Hazardous Materials</i> , 2013 , 250-251, 403-11	12.8	88
390	Role of aryl hydrocarbon receptor in cancer. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2013 , 1836, 197-210	11.2	88
389	Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11727-11777	6.8	85
388	Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4423-4437	6.8	84
387	Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model. <i>Atmospheric Environment</i> , 2010 , 44, 4199-4208	5.3	84
386	Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. <i>Atmospheric Environment</i> , 2004 , 38, 103-112	5.3	80
385	On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM). <i>Environmental Science and Pollution Research</i> , 2010 , 17, 547-60	5.1	79
384	Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. <i>Chemosphere</i> , 2004 , 56, 457-63	8.4	79
383	VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. <i>Atmospheric Environment</i> , 2013 , 76, 125-135	5.3	78
382	Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. <i>Journal of Cleaner Production</i> , 2017 , 149, 629-635	10.3	77
381	Haze insights and mitigation in China: an overview. <i>Journal of Environmental Sciences</i> , 2014 , 26, 2-12	6.4	77
380	Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China. <i>Atmospheric Environment</i> , 2013 , 79, 110-118	5.3	77
379	Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic. <i>Scientific Reports</i> , 2013 , 3, 2280	4.9	77

(2014-2017)

378	Improvement of a Global High-Resolution Ammonia Emission Inventory for Combustion and Industrial Sources with New Data from the Residential and Transportation Sectors. <i>Environmental Science & Computer </i>	10.3	76	
377	Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events. <i>Atmospheric Environment</i> , 2014 , 86, 193-202	5.3	76	
376	Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. <i>Atmospheric Pollution Research</i> , 2014 , 5, 210-218	4.5	76	
375	Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China. <i>Building and Environment</i> , 2005 , 40, 329-341	6.5	76	
374	Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. <i>Chemosphere</i> , 2006 , 64, 423-31	8.4	75	
373	Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests. <i>Ecotoxicology and Environmental Safety</i> , 2005 , 61, 239-46	7	74	
372	Introduction to the special issue I h-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) I Atmospheric Chemistry and Physics, 2019 , 19, 7519-75	46 8	73	
371	Airborne submicron particulate (PM1) pollution in Shanghai, China: chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. <i>Science of the Total Environment</i> , 2014 , 473-474, 199-206	10.2	73	
370	Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. <i>Energy & Energy & Ener</i>	4.1	72	
369	Ambient halocarbon mixing ratios in 45 Chinese cities. <i>Atmospheric Environment</i> , 2006 , 40, 7706-7719	5.3	71	
368	Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. <i>Environment International</i> , 2003 , 29, 429-35	12.9	71	
367	Organosulfates from pinene and isoprene over the Pearl River Delta, South China: seasonal variation and implication in formation mechanisms. <i>Environmental Science & Environmental Science & Environm</i>	10.3	70	
366	Emission factor of ammonia (NH 3) from on-road vehicles in China: tunnel tests in urban Guangzhou. <i>Environmental Research Letters</i> , 2014 , 9, 064027	6.2	69	
365	Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic. <i>Scientific Reports</i> , 2013 , 3, 3119	4.9	68	
364	Spatial distributions of secondary organic aerosols from isoprene, monoterpenes, Etaryophyllene, and aromatics over China during summer. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 11,877-11,891	4.4	65	
363	Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. <i>Journal of Hazardous Materials</i> , 2012 , 239-240, 78-87	12.8	65	
362	Determination of phenols in environmental water samples by ionic liquid-based headspace liquid-phase microextraction coupled with high-performance liquid chromatography. <i>Journal of Separation Science</i> , 2007 , 30, 42-7	3.4	65	
361	Severe haze episodes and seriously polluted fog water in Ji'nan, China. <i>Science of the Total Environment</i> , 2014 , 493, 133-7	10.2	64	

360	Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 9049-9062	6.8	64
359	Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China. <i>Atmospheric Environment</i> , 2015 , 122, 876	5 - 884	64
358	Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		62
357	Leachates of municipal solid waste incineration bottom ash from Macao: heavy metal concentrations and genotoxicity. <i>Chemosphere</i> , 2007 , 67, 1133-7	8.4	61
356	Ambient air benzene at background sites in China's most developed coastal regions: exposure levels, source implications and health risks. <i>Science of the Total Environment</i> , 2015 , 511, 792-800	10.2	60
355	Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 301-313	4	59
354	Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China: a case study. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4723-4735	6.8	59
353	Indoor and outdoor carbonyl compounds and BTEX in the hospitals of Guangzhou, China. <i>Science of the Total Environment</i> , 2006 , 368, 574-84	10.2	58
352	Partitioning soil respiration of subtropical forests with different successional stages in south China. <i>Forest Ecology and Management</i> , 2007 , 243, 178-186	3.9	58
351	Chemical and stable carbon isotopic composition of PM _{2.5} from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy. Atmospheric Chemistry and Physics, 2015, 15, 3097-3108	6.8	57
350	Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11803-11817	6.8	57
349	Enhanced trimethylamine-containing particles during fog events detected by single particle aerosol mass spectrometry in urban Guangzhou, China. <i>Atmospheric Environment</i> , 2012 , 55, 121-126	5.3	56
348	Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city, China. <i>Atmospheric Research</i> , 2017 , 184, 48-55	5.4	55
347	Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in bird eggs from the Yellow River Delta, North China. <i>Environmental Science & Environmental Science & Environm</i>	- 62 .3	55
346	Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments. <i>Environmental Science & Environmental Science </i>	10.3	55
345	Source apportionment of atmospheric PAHs and their toxicity using PMF: Impact of gas/particle partitioning. <i>Atmospheric Environment</i> , 2015 , 103, 114-120	5.3	54
344	Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, south China. <i>Journal of Environmental Sciences</i> , 2012 , 24, 72-7	6.4	54
343	Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3881-3898	6.8	54

342	Soil uptake of carbonyl sulfide in subtropical forests with different successional stages in south China. <i>Journal of Geophysical Research</i> , 2007 , 112,		54
341	Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China. <i>Atmospheric Environment</i> , 2005 , 39, 7374-7383	5.3	54
340	Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. <i>Journal of Environmental Sciences</i> , 2014 , 26, 810-7	6.4	53
339	Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: primary and secondary organic tracers. <i>Environmental Science & Environmental Science & Environme</i>	-5 ¹ 7 ^{0.3}	53
338	Nitric oxide emission from a typical vegetable field in the Pearl River Delta, China. <i>Atmospheric Environment</i> , 2007 , 41, 9498-9505	5.3	53
337	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO₂. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 675-689	6.8	52
336	Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai. <i>Journal of Environmental Sciences</i> , 2014 , 26, 1894-902	6.4	51
335	Modelling VOC source impacts on high ozone episode days observed at a mountain summit in Hong Kong under the influence of mountain-valley breezes. <i>Atmospheric Environment</i> , 2013 , 81, 166-176	5.3	51
334	Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China's developed coastal regions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 6669-668	8 7 ·4	51
333	Roadside and rooftop measurements of polycyclic aromatic hydrocarbons in PM2.5 in urban Guangzhou: Evaluation of vehicular and regional combustion source contributions. <i>Atmospheric Environment</i> , 2011 , 45, 7184-7191	5.3	50
332	Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8781-8793	6.8	49
331	Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. <i>Science of the Total Environment</i> , 2017 , 584-585, 307-317	10.2	48
330	Composition profiles of organic aerosols from Chinese residential cooking: case study in urban Guangzhou, south China. <i>Journal of Atmospheric Chemistry</i> , 2015 , 72, 1-18	3.2	48
329	Abundance, composition and source of atmospheric PM2.5 at a remote site in the Tibetan Plateau, China. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2013 , 65, 20281	3.3	48
328	Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China. <i>Environmental Pollution</i> , 2018 , 233, 806-819	9.3	48
327	Accumulation and translocation of 198Hg in four crop species. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 334-40	3.8	47
326	A review of experimental techniques for aerosol hygroscopicity studies. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12631-12686	6.8	46
325	A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3931-3944	6.8	45

324	PM induced apoptosis in endothelial cell through the activation of the p53-bax-caspase pathway. <i>Chemosphere</i> , 2017 , 177, 135-143	8.4	44
323	Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface. <i>Environmental Science & Environmental Science & Env</i>	10.3	44
322	Implications of changing urban and rural emissions on non-methane hydrocarbons in the Pearl River Delta region of China. <i>Atmospheric Environment</i> , 2008 , 42, 3780-3794	5.3	44
321	Atmospheric Hexachlorocyclohexanes in the North Pacific Ocean and the adjacent Arctic region: spatial patterns, chiral signatures, and sea-air exchanges. <i>Environmental Science & Environmental Scien</i>	10.3	44
320	Significant Production of Secondary Organic Aerosol from Emissions of Heated Cooking Oils. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 32-37	11	43
319	Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 14821-14839	6.8	42
318	Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11535-1	1 6 89	42
317	Volatile organic compounds at a rural site in Beijing: influence of temporary emission control and wintertime heating. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12663-12682	6.8	42
316	Sources of CECIalkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region. <i>Science of the Total Environment</i> , 2015 , 502, 236-45	10.2	41
315	Contemporary or fossil origin: split of estimated secondary organic carbon in the southeastern United States. <i>Environmental Science & Environmental S</i>	10.3	41
314	Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China. <i>Science of the Total Environment</i> , 2017 , 593-594, 462-469	10.2	40
313	Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter. <i>Scientific Reports</i> , 2016 , 6, 20411	4.9	40
312	Compositions and sources of organic acids in fine particles (PM2.5) over the Pearl River Delta region, South China. <i>Journal of Environmental Sciences</i> , 2014 , 26, 110-21	6.4	39
311	Source and mixing state of iron-containing particles in Shanghai by individual particle analysis. <i>Chemosphere</i> , 2014 , 95, 9-16	8.4	39
310	Air quality improvement in response to intensified control strategies in Beijing during 2013-2019. <i>Science of the Total Environment</i> , 2020 , 744, 140776	10.2	39
309	Occurrence and ordination of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in agricultural soils from Guangzhou, China. <i>Archives of Environmental Contamination and Toxicology</i> , 2008 , 54, 155-66	3.2	38
308	Significant Increase of Aromatics-Derived Secondary Organic Aerosol during Fall to Winter in China. <i>Environmental Science & Environmental Science & E</i>	10.3	37
307	A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2115-2133	6.8	37

(2018-2018)

306	Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4277-4295	6.8	37
305	Trends of ambient fine particles and major chemical components in the Pearl River Delta region: observation at a regional background site in fall and winter. <i>Science of the Total Environment</i> , 2014 , 497-498, 274-281	10.2	37
304	Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China, using positive matrix factorization (PMF). <i>Environmental Science and Pollution Research</i> , 2013 , 20, 2398-409	5.1	37
303	An ozone episode in the Pearl River Delta: Field observation and model simulation. <i>Journal of Geophysical Research</i> , 2010 , 115,		37
302	Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region. <i>Journal of Environmental Sciences</i> , 2016 , 40, 10-9	6.4	37
301	Characterizations of volatile organic compounds during high ozone episodes in Beijing, China. <i>Environmental Monitoring and Assessment</i> , 2012 , 184, 1879-89	3.1	36
300	Size-segregated chemical characteristics of aerosol during haze in an urban area of the Pearl River Delta region, China. <i>Urban Climate</i> , 2013 , 4, 74-84	6.8	36
299	Variation of secondary coatings associated with elemental carbon by single particle analysis. <i>Atmospheric Environment</i> , 2014 , 92, 162-170	5.3	36
298	Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry. <i>Atmospheric Research</i> , 2015 , 153, 286-295	5.4	35
297	Atmospheric Photosensitization: A New Pathway for Sulfate Formation. <i>Environmental Science & Environmental Science</i>	10.3	35
296	Relative contributions of secondary organic aerosol formation from toluene, xylenes, isoprene, and monoterpenes in Hong Kong and Guangzhou in the Pearl River Delta, China: an emission-based box modeling study. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 507-519	4.4	35
295	Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO/SnO2 coupled oxide in a flow-through photocatalytic reactor. <i>Journal of Chemical Technology and Biotechnology</i> , 2005 , 80, 251-258	3.5	35
294	Cyclic organosilicon compounds in ambient air in Guangzhou, Macau and Nanhai, Pearl River Delta. <i>Applied Geochemistry</i> , 2001 , 16, 1447-1454	3.5	35
293	Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4957-4988	6.8	34
292	Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies. <i>Indoor Air</i> , 2017 , 27, 169-178	5.4	33
291	Sensitivity analysis of an updated bidirectional airBurface exchange model for elemental mercury vapor. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6273-6287	6.8	32
290	Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. <i>Atmospheric Research</i> , 2019 , 218, 257-268	5.4	32
289	The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway. <i>Environmental Pollution</i> , 2018 , 233, 218-225	9.3	32

288	Genotoxicity of total and fractionated extractable organic matter in fine air particulate matter from urban Guangzhou: comparison between haze and nonhaze episodes. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 206-12	3.8	31
287	Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. <i>Atmospheric Environment</i> , 2016 , 140, 94-105	5-3	30
286	Total gaseous mercury in Pearl River Delta region, China during 2008 winter period. <i>Atmospheric Environment</i> , 2011 , 45, 834-838	5.3	30
285	Penguins and vegetations on Ardley Island, Antarctica: evolution in the past 2,400 years. <i>Polar Biology</i> , 2007 , 30, 1475-1481	2	30
284	Characteristics of atmospheric carbonyls and VOCs in Forest Park in South China. <i>Environmental Monitoring and Assessment</i> , 2008 , 137, 275-85	3.1	30
283	Exchange of carbonyl sulfide (OCS) and dimethyl sulfide (DMS) between rice paddy fields and the atmosphere in subtropical China. <i>Agriculture, Ecosystems and Environment</i> , 2008 , 123, 116-124	5.7	30
282	Attributing risk burden of PM2.5-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China. <i>Atmospheric Environment</i> , 2016 , 142, 313-323	5.3	30
281	Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix. <i>Atmospheric Environment</i> , 2017 , 150, 67-	756 ³	29
280	Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM) during Clear, Fog, and Haze Episodes in Winter in Beijing, China. <i>Environmental Science & Episodes amp; Technology</i> , 2018 , 52, 5199-5207	10.3	29
279	Development of a compound-specific isotope analysis method for atmospheric formaldehyde and acetaldehyde. <i>Environmental Science & Environmental & Environment</i>	10.3	29
278	Elevated levels of OH observed in haze events during wintertime in central Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14847-14871	6.8	29
277	Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 5763-5779	4	29
276	Photoenhanced Uptake of NO2 and HONO Formation on Real Urban Grime. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 413-417	11	28
275	Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using alkommercial vapor sorption analyzer. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3821-3832	4	28
274	A review on evolution of nitrogen-containing species during selective pyrolysis of waste wood-based panels. <i>Fuel</i> , 2019 , 253, 1214-1228	7.1	28
273	Carbon isotope analysis for source identification of atmospheric formaldehyde and acetaldehyde in Dinghushan Biosphere Reserve in South China. <i>Atmospheric Environment</i> , 2009 , 43, 3489-3495	5.3	28
272	Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016. <i>Atmospheric Environment</i> , 2018 , 194, 188-197	5.3	28
271	Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2247-2258	6.8	27

270	Evolution of biomass burning smoke particles in the dark. <i>Atmospheric Environment</i> , 2015 , 120, 244-252	5.3	27
269	Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China. <i>Journal of Geophysical Research</i> , 2010 , 115,		27
268	Ambient PM-bound polycyclic aromatic hydrocarbons (PAHs) in rural Beijing: Unabated with enhanced temporary emission control during the 2014 APEC summit and largely aggravated after the start of wintertime heating. <i>Environmental Pollution</i> , 2018 , 238, 532-542	9.3	26
267	On-road vehicle emissions of glyoxal and methylglyoxal from tunnel tests in urban Guangzhou, China. <i>Atmospheric Environment</i> , 2016 , 127, 55-60	5.3	26
266	Filter-based measurement of light absorption by brown carbon in PM in a megacity in South China. <i>Science of the Total Environment</i> , 2018 , 633, 1360-1369	10.2	26
265	In situ chemical composition measurement of individual cloud residue particles at almountain site, southern China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 8473-8488	6.8	26
264	Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 13891-13901	6.8	26
263	Role of ammonia in forming secondary aerosols from gasoline vehicle exhaust. <i>Science China Chemistry</i> , 2015 , 58, 1377-1384	7.9	26
262	Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China. <i>Atmospheric Environment</i> , 2017 , 171, 279-288	5.3	25
261	From headwaters to estuary: Distribution and fate of halogenated flame retardants (HFRs) in a river basin near the largest HFR manufacturing base in China. <i>Science of the Total Environment</i> , 2018 , 621, 1370-1377	10.2	25
260	Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles. <i>Chemical Engineering Journal</i> , 2021 , 404, 127052	14.7	25
259	The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 14975-1498	56.8	24
258	Development of a compound-specific carbon isotope analysis method for atmospheric formaldehyde via NaHSO3 and cysteamine derivatization. <i>Analytical Chemistry</i> , 2006 , 78, 1206-11	7.8	24
257	Indoor radon levels in selected hot spring hotels in Guangdong, China. <i>Science of the Total Environment</i> , 2005 , 339, 63-70	10.2	24
256	Spatial and seasonal variations of secondary organic aerosol from terpenoids over China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 14,661-14,678	4.4	24
255	Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants. <i>Environmental Pollution</i> , 2018 , 240, 884-893	9.3	24
254	Particulate Matter Measurement Indoors: A Review of Metrics, Sensors, Needs, and Applications. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	23
253	Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NO in Guangzhou, China. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1393-1402	4.3	23

252	PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007-2012. Journal of Hazardous Materials, 2015 , 286, 484-92	12.8	23
251	Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean. Journal of Geophysical Research, 2007, 112,		23
250	Inflammation Response of Water-Soluble Fractions in Atmospheric Fine Particulates: A Seasonal Observation in 10 Large Chinese Cities. <i>Environmental Science & Environmental S</i>	10.3	22
249	The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers. <i>Atmospheric Environment</i> , 2016 , 144, 60-68	5.3	22
248	Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2985-2996	6.8	22
247	Soil nitric oxide emissions from two subtropical humid forests in south China. <i>Journal of Geophysical Research</i> , 2007 , 112,		22
246	Autumn and Wintertime Polycyclic Aromatic Hydrocarbons in PM2.5 and PM2.5 and Pm2.5 from Urumqi, China. <i>Aerosol and Air Quality Research</i> , 2013 , 13, 407-414	4.6	22
245	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO_{<i>x</i>} in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2125-2147	6.8	22
244	Primary and secondary organic aerosol from heated cooking oil emissions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11363-11374	6.8	22
243	Oxidative potential of gas phase combustion emissions - An underestimated and potentially harmful component of air pollution from combustion processes. <i>Atmospheric Environment</i> , 2017 , 158, 227-235	5.3	21
242	Uncertainties of isoprene emissions in the MEGAN model estimated for a coniferous and broad-leaved mixed forest in Southern China. <i>Atmospheric Environment</i> , 2014 , 98, 105-110	5.3	21
241	Determination of thiophanate-methyl and chlorotoluron in water samples by improved single-drop microextraction coupled with high-performance liquid chromatography. <i>International Journal of Environmental Analytical Chemistry</i> , 2008 , 88, 461-471	1.8	21
240	The abrupt climate change near 4,400 yr BP on the cultural transition in Yuchisi, China and its global linkage. <i>Scientific Reports</i> , 2016 , 6, 27723	4.9	21
239	Chemical characteristics of submicron particulates (PM1.0) in Wuhan, Central China. <i>Atmospheric Research</i> , 2015 , 161-162, 169-178	5.4	20
238	Mechanisms of lung toxicity induced by biomass burning aerosols. <i>Particle and Fibre Toxicology</i> , 2020 , 17, 4	8.4	20
237	Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication. <i>Science of the Total Environment</i> , 2014 , 468-469, 272-9	10.2	20
236	Atmospheric DDTs over the North Pacific Ocean and the adjacent Arctic region: Spatial distribution, congener patterns and source implication. <i>Atmospheric Environment</i> , 2009 , 43, 4319-4326	5.3	20
235	Effect of traffic restriction on reducing ambient volatile organic compounds (VOCs): Observation-based evaluation during a traffic restriction drill in Guangzhou, China. <i>Atmospheric Environment</i> , 2017 , 161, 61-70	5.3	19

234	Aromatic Photo-oxidation, A New Source of Atmospheric Acidity. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 7798-7806	10.3	19	
233	Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. <i>Science of the Total Environment</i> , 2020 , 699, 134357	10.2	19	
232	Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes. <i>Journal of Environmental Sciences</i> , 2015 , 33, 69-77	6.4	18	
231	Sources of primary and secondary organic aerosol and their diurnal variations. <i>Journal of Hazardous Materials</i> , 2014 , 264, 536-44	12.8	18	
230	Preliminary Study of Organic Pollutants in Air of Guangzhou, Hong Kong, and Macao. <i>ACS Symposium Series</i> , 1997 , 164-176	0.4	18	
229	Odorous volatile organic sulfides in wastewater treatment plants in Guangzhou, China. <i>Water Environment Research</i> , 2008 , 80, 324-30	2.8	18	
228	Oxalate Formation Enhanced by Fe-Containing Particles and Environmental Implications. <i>Environmental Science & Environmental E</i>	10.3	18	
227	Gas-to-particle partitioning of atmospheric amines observed at a mountain site in southern China. <i>Atmospheric Environment</i> , 2018 , 195, 1-11	5.3	18	
226	Organosulfur Compounds Formed from Heterogeneous Reaction between SO2 and Particulate-Bound Unsaturated Fatty Acids in Ambient Air. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 318-322	11	17	
225	Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment. <i>Science of the Total Environment</i> , 2018 , 610-611, 905-911	10.2	17	
224	Secondary Organic Aerosol Formation From Isoprene Epoxides in the Pearl River Delta, South China: IEPOX- and HMML-Derived Tracers. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 6999-7012	4.4	17	
223	Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China. <i>Journal of Environmental Sciences</i> , 2012 , 24, 131-41	6.4	17	
222	Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China. <i>Journal of Environmental Radioactivity</i> , 2011 , 102, 400-6	2.4	17	
221	Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 147	69-1478	85 ⁷	
220	Observations of atmospheric mercury in China: a critical review		17	
219	Measurements of traffic-dominated pollutant emissions in a Chinese megacity. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8737-8761	6.8	17	
218	Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry. <i>Journal of Hazardous Materials</i> , 2016 , 320, 547-555	12.8	17	
217	Pollutants emitted from typical Chinese vessels: Potential contributions to ozone and secondary organic aerosols. <i>Journal of Cleaner Production</i> , 2019 , 238, 117862	10.3	16	

216	Evolution of Indoor Cooking Emissions Captured by Using Secondary Electrospray Ionization High-Resolution Mass Spectrometry. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 76-81	11	16
215	Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities: A laboratory study. <i>Journal of Environmental Sciences</i> , 2016 , 45, 257-69	6.4	16
214	Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 10844-10857	4.4	16
213	Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 13,045	4.4	16
212	Emission of volatile organic sulfur compounds from a heavily polluted river in Guangzhou, South China. <i>Environmental Monitoring and Assessment</i> , 2008 , 143, 121-30	3.1	16
211	Fullerenes-extracted soot: a new adsorbent for collecting volatile organic compounds in ambient air. <i>Journal of Chromatography A</i> , 2000 , 886, 313-7	4.5	16
210	Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7595-7615	6.8	16
209	Oxygen vacancies-enriched CoFeO for peroxymonosulfate activation: The reactivity between radical-nonradical coupling way and bisphenol A. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126357	12.8	16
208	Fates and ecological effects of current-use pesticides (CUPs) in a typical river-estuarine system of Laizhou Bay, North China. <i>Environmental Pollution</i> , 2019 , 252, 573-579	9.3	15
207	Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1887-1900	6.8	15
206	In situ detection of the chemistry of individual fog droplet residues in the Pearl River Delta region, China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 9105-9116	4.4	15
205	Characteristics and Formation Mechanisms of Sulfate and Nitrate in Size-segregated Atmospheric Particles from Urban Guangzhou, China. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 1284-1293	4.6	14
204	Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO Transformation on Glass Windows. <i>Environmental Science & Environmental </i>	10.3	14
203	Impact of anthropogenic emissions on biogenic secondary organic aerosol: observation in the Pearl River Delta, southern China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14403-14415	6.8	14
202	In-cloud formation of secondary species in iron-containing particles. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1195-1206	6.8	13
201	Effects of straw return on C 2 © 5 non-methane hydrocarbon (NMHC) emissions from agricultural soils. <i>Atmospheric Environment</i> , 2015 , 100, 210-217	5.3	13
200	Phase Transitions and Hygroscopic Growth of Mg(ClO4)2, NaClO4, and NaClO4IH2O: Implications for the Stability of Aqueous Water in Hyperarid Environments on Mars and on Earth. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 159-167	3.2	13
199	Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique. <i>Journal of Environmental Management</i> , 2019 , 249, 10	07 <i>75</i> 5-1	07755

(2020-2012)

198	Seasonal and diurnal variations of atmospheric non-methane hydrocarbons in Guangzhou, China. <i>International Journal of Environmental Research and Public Health</i> , 2012 , 9, 1859-73	4.6	13
197	Fast screening compositions of PM by ATR-FTIR: Comparison with results from IC andOC/EC analyzers. <i>Journal of Environmental Sciences</i> , 2018 , 71, 76-88	6.4	13
196	Real-time and single-particle volatility of elemental carbon-containing particles in the urban area of Pearl River Delta region, China. <i>Atmospheric Environment</i> , 2015 , 118, 194-202	5.3	12
195	Genotoxicity of the sediments collected from Pearl River in China and their polycyclic aromatic hydrocarbons (PAHs) and heavy metals. <i>Environmental Monitoring and Assessment</i> , 2012 , 184, 5651-61	3.1	12
194	Air-soil exchange of dimethyl sulfide, carbon disulfide, and dimethyl disulfide in three subtropical forests in south China. <i>Journal of Geophysical Research</i> , 2010 , 115,		12
193	Degradation of toluene gas at the surface of ZnO/SnO2 photocatalysts in a baffled bed reactor. <i>Research on Chemical Intermediates</i> , 2009 , 35, 827-838	2.8	12
192	Chemical Characteristics and Source Apportionment of PM2.5 during Winter in the Southern Part of Urumqi, China. <i>Aerosol and Air Quality Research</i> , 2019 , 19, 1325-1337	4.6	12
191	Measurements of higher alkanes using NO⁺ chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14123-14138	6.8	12
190	Impacts of methanesulfonate on the cloud condensation nucleation activity of sea salt aerosol. <i>Atmospheric Environment</i> , 2019 , 201, 13-17	5.3	12
189	Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. <i>Science China Chemistry</i> , 2015 , 58, 1426-1434	7.9	11
188	Coke workers' exposure to volatile organic compounds in northern China: a case study in Shanxi Province. <i>Environmental Monitoring and Assessment</i> , 2015 , 187, 359	3.1	11
187	The real part of the refractive indices and effective densities for chemically segregated ambient aerosols in Guangzhou measured by a single-particle aerosol mass spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2631-2640	6.8	11
186	Ambient CFCs and HCFC-22 observed concurrently at 84 sites in the Pearl River Delta region during the 2008\(\textbf{Q}009 \) grid studies. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 7699-7717	4.4	11
185	Persistent halogenated compounds in captive Chinese alligators (Alligator sinensis) from China. <i>Chemosphere</i> , 2014 , 110, 23-30	8.4	11
184	The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica. <i>Polar Biology</i> , 2010 , 33, 1399-1406	2	11
183	Carbon isotope analysis of acetaldehyde and acetone by cysteamine derivatization. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 1809-12	2.2	11
182	Emissions of nitrogen oxides and volatile organic compounds from liquefied petroleum gas-fueled taxis under idle and cruising modes. <i>Environmental Pollution</i> , 2020 , 267, 115623	9.3	11
181	How efficiently can HEPA purifiers remove priority fine and ultrafine particles from indoor air?. <i>Environment International</i> , 2020 , 144, 106001	12.9	11

180	Stabilization for the secondary species contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis. <i>Atmospheric Environment</i> , 2020 , 242, 117817	5.3	11
179	Determination of Amines Associated with Particles by Gas Chromatography-mass Spectrometry. <i>Chinese Journal of Analytical Chemistry</i> , 2017 , 45, 477-482	1.6	10
178	Light-Enhanced Heterogeneous Conversion of NO to HONO on Solid Films Consisting of Fluorene and Fluorene/NaSO: An Impact on Urban and Indoor Atmosphere. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 11079-11086	10.3	10
177	The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere. <i>Environmental Pollution</i> , 2020 , 263, 114507	9.3	10
176	Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing. <i>Journal of Environmental Sciences</i> , 2016 , 39, 52-61	6.4	10
175	Chapter 6 Sources and Occurrence of Persistent Organic Pollutants in the Pearl River Delta, South China. <i>Developments in Environmental Science</i> , 2007 , 7, 289-311		10
174	Development of a compound-specific isotope analysis method for acetone via 2,4-dinitrophenylhydrazine derivatization. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 2669-7	72.2	10
173	On mineral dust aerosol hygroscopicity. Atmospheric Chemistry and Physics, 2020 , 20, 13611-13626	6.8	10
172	Heterogeneous reaction of NO with hematite, goethite and magnetite: Implications for nitrate formation and iron solubility enhancement. <i>Chemosphere</i> , 2020 , 242, 125273	8.4	10
171	High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China. <i>Environmental Science & Environmental Science & En</i>	10.3	10
170	Detection of organosulfates and nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry. <i>Science of the Total Environment</i> , 2021 , 767, 144339	10.2	10
169	Optical Properties of Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic Volatile Organic Compounds. <i>Environmental Science & Environmental Science &</i>	10.3	10
168	Exposure to hazardous air pollutants in underground car parks in Guangzhou, China. <i>Air Quality, Atmosphere and Health,</i> 2017 , 10, 555-563	5.6	9
167	Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments. <i>RSC Advances</i> , 2017 , 7, 46866-46873	3.7	9
166	Parent, Alkylated, and Sulfur/Oxygen-Containing Polycyclic Aromatic Hydrocarbons in Mainstream Smoke from 13 Brands of Chinese Cigarettes. <i>Environmental Science & Environmental Science & Environmen</i>	9 ^{10.3}	9
165	Torrefaction of waste wood-based panels: More understanding from the combination of upgrading and denitrogenation properties. <i>Fuel Processing Technology</i> , 2020 , 206, 106462	7.2	9
164	Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing. Journal of Environmental Sciences, 2020 , 95, 33-42	6.4	9
163	High secondary formation of nitrogen-containing organics (NOCs) and its possible link to oxidized organics and ammonium. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1469-1481	6.8	9

(2018-2020)

162	Comparison between idling and cruising gasoline vehicles in primary emissions and secondary organic aerosol formation during photochemical ageing. <i>Science of the Total Environment</i> , 2020 , 722, 137934	10.2	9
161	Characteristics, loss and gain of atmospheric carbonyl compounds in winters of 2008\(\bar{Q}\)010 in Pearl River Delta region, China. <i>Journal of Atmospheric Chemistry</i> , 2013 , 70, 53-67	3.2	9
160	Ecosystem evolution of seal colony and the influencing factors in the 20th century on Fildes Peninsula, West Antarctica. <i>Journal of Environmental Sciences</i> , 2011 , 23, 1431-6	6.4	9
159	Legacy and novel halogenated flame retardants in seawater and atmosphere of the Bohai Sea: Spatial trends, seasonal variations, and influencing factors. <i>Water Research</i> , 2020 , 184, 116117	12.5	8
158	Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong. <i>Atmospheric Research</i> , 2016 , 182, 132-141	5.4	8
157	Hygroscopicity and optical properties of alkylaminium sulfates. <i>Journal of Environmental Sciences</i> , 2014 , 26, 37-43	6.4	8
156	Carbonyl sulfide and dimethyl sulfide fluxes in an urban lawn and adjacent bare soil in Guangzhou, China. <i>Journal of Environmental Sciences</i> , 2011 , 23, 784-9	6.4	8
155	Tropospheric aerosol hygroscopicity in China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13877-13903	36.8	8
154	Nationwide increase of polycyclic aromatic hydrocarbons in ultrafine particles during winter over China revealed by size-segregated measurements. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14581-7	14595	8
153	Seasonal variation of amine-containing particles in urban Guangzhou, China. <i>Atmospheric Environment</i> , 2020 , 222, 117102	5.3	8
152	Enhanced Wet Deposition of Water-Soluble Organic Nitrogen During the Harvest Season: Influence of Biomass Burning and In-Cloud Scavenging. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD032699	4.4	8
151	Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8455-8478	6.8	8
150	Concentration characteristics, source apportionment, and oxidative damage of PM-bound PAHs in petrochemical region in Xinjiang, NW China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 226	529 ⁻ 22	6 ⁸ 0
149	Leakage Rates of Refrigerants CFC-12, HCFC-22, and HFC-134a from Operating Mobile Air Conditioning Systems in Guangzhou, China: Tests inside a Busy Urban Tunnel under Hot and Humid Weather Conditions. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 481-486	11	7
148	Recent Advances in Quantifying Wet Scavenging Efficiency of Black Carbon Aerosol. <i>Atmosphere</i> , 2019 , 10, 175	2.7	7
147	Pyrolysis of hydrothermally pretreated biowastes: The controllability on the formation of NOx precursors. <i>Chemical Engineering Journal</i> , 2020 , 393, 124727	14.7	7
146	Wet and Dry Nitrogen Depositions in the Pearl River Delta, South China: Observations at Three Typical Sites With an Emphasis on Water-Soluble Organic Nitrogen. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD030983	4.4	7
145	Ozonolysis of <i></i>-phellandrene [Part[2: Compositional analysis of secondary organic aerosol highlights the role of stabilised Criegee intermediates. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4673-4693	6.8	7

144	High cancer risk from inhalation exposure to PAHs in Fenhe Plain in winter: A particulate size distribution-based study. <i>Atmospheric Environment</i> , 2019 , 216, 116924	5.3	7
143	Ozonolysis of <i></i>-phellandrene [Part[]]: Gas- and particle-phase characterisation. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6583-6609	6.8	7
142	Reaction of NO(2) with selected conjugated alkenes. Journal of Physical Chemistry A, 2013, 117, 14132	- 40 .8	7
141	Soil nitric oxide emissions after nitrogen and phosphorus additions in two subtropical humid forests. <i>Journal of Geophysical Research</i> , 2008 , 113,		7
140	Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14063-14075	6.8	7
139	Palladium Nanoparticles on Covalent Organic Framework Supports as Catalysts for Suzuki M iyaura Cross-Coupling Reactions. <i>ACS Applied Nano Materials</i> , 2021 , 4, 6239-6249	5.6	7
138	Exposure to Particle Matters and Hazardous Volatile Organic Compounds in Selected Hot Spring Hotels in Guangdong, China. <i>Atmosphere</i> , 2016 , 7, 54	2.7	7
137	Dietary supplementation with Bacillus mixture modifies the intestinal ecosystem of weaned piglets in an overall beneficial way. <i>Journal of Applied Microbiology</i> , 2021 , 130, 233-246	4.7	7
136	Spatio-temporal variations and input patterns on the legacy and novel brominated flame retardants (BFRs) in coastal rivers of North China. <i>Environmental Pollution</i> , 2021 , 283, 117093	9.3	7
135	Molecular composition and photochemical evolution of water-soluble organic carbon (WSOC) extracted from field biomass burning aerosols using high-resolution mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6115-6128	6.8	6
134	Source-oriented characterization of single particles from in-port ship emissions in Guangzhou, China. <i>Science of the Total Environment</i> , 2020 , 724, 138179	10.2	6
133	Improvement of 2,4-dinitrophenylhydrazine derivatization method for carbon isotope analysis of atmospheric acetone. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 1322-6	2.2	6
132	Morphology, composition and mixing state of individual airborne particles: Effects of the 2017 Action Plan in Beijing, China. <i>Journal of Cleaner Production</i> , 2021 , 329, 129748	10.3	6
131	SurfaceEtmosphere fluxes of volatile organic compounds in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 15101-15125	6.8	6
130	Interactions of organosulfates with water vapor under sub- and supersaturated conditions. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 7135-7148	6.8	6
129	Facilitating charge transfer via a giant magnetoresistance effect for high-efficiency photocatalytic hydrogen production. <i>Chemical Communications</i> , 2019 , 55, 14478-14481	5.8	6
128	Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment. <i>Atmosphere</i> , 2019 , 10, 641	2.7	6
127	Evidence for the Formation of Imidazole from Carbonyls and Reduced Nitrogen Species at the Individual Particle Level in the Ambient Atmosphere. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 9-15	11	6

126	Humidity and PM composition determine atmospheric light extinction in the arid region of northwest China. <i>Journal of Environmental Sciences</i> , 2021 , 100, 279-286	6.4	6
125	Low-NO atmospheric oxidation pathways in a polluted megacity. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1613-1625	6.8	6
124	Polycyclic Aromatic Hydrocarbons in PM2.5 and PM2.5🗓0 in Urumqi, China: Temporal Variations, Health Risk, and Sources. <i>Atmosphere</i> , 2018 , 9, 412	2.7	6
123	Real-Time Characterization of Aerosol Compositions, Sources, and Aging Processes in Guangzhou During PRIDE-GBA 2018 Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021J	DØ351	14
122	Source apportionment of VOCs in a typical medium-sized city in North China Plain and implications on control policy. <i>Journal of Environmental Sciences</i> , 2021 , 107, 26-37	6.4	6
121	Evaluation of surfactant performance in in situ foam flushing for remediation of dichlorodiphenyltrichloroethane-contaminated soil. <i>International Journal of Environmental Science and Technology</i> , 2017 , 14, 631-638	3.3	5
120	Occurrence of decabromodiphenyl ethane in captive Chinese alligators (Alligator sinensis) from China. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2015 , 94, 12-6	2.7	5
119	Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. <i>ChemSusChem</i> , 2020 , 13, 3605-3613	8.3	5
118	Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic. <i>Scientific Reports</i> , 2016 , 6, 26007	4.9	5
117	Measurement of aerosol effective density by single particle mass spectrometry. <i>Science China Earth Sciences</i> , 2016 , 59, 320-327	4.6	5
116	Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China. <i>Atmospheric Environment</i> , 2014 , 86, 148-154	5.3	5
115	Contribution of aboveground plants, the rhizosphere and root-free-soils to total COS and DMS fluxes at three key growth stages in rice paddies. <i>Agriculture, Ecosystems and Environment</i> , 2013 , 179, 11-17	5.7	5
114	Alvacuum ultraviolet ion source (VUV-IS) for iodidelhemical ionization mass spectrometry: a substitute for radioactive ion sources. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 3683-3696	4	5
113	Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7291-7306	6.8	5
112	A review of measurement techniques for aerosol effective density. <i>Science of the Total Environment</i> , 2021 , 778, 146248	10.2	5
111	Measurement report: Emissions of intermediate-volatility organic compounds from vehicles under real-world driving conditions in an urban tunnel. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10005-10	0013	5
110	Monocarboxylic and dicarboxylic acids over oceans from the East China Sea to the Arctic Ocean: Roles of ocean emissions, continental input and secondary formation. <i>Science of the Total Environment</i> , 2018 , 640-641, 284-292	10.2	5
109	Importance of Oxidants and Temperature in the Formation of Biogenic Organosulfates and Nitrooxy Organosulfates. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 2291-2306	3.2	5

108	Decreased Human Respiratory Absorption Factors of Aromatic Hydrocarbons at Lower Exposure Levels: The Dual Effect in Reducing Ambient Air Toxics. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 463-469	11	4
107	Effect of lightning activities on surface atmospheric NO, O3 and submicron particles based on artificially triggered lightning technology: A case study. <i>Atmospheric Pollution Research</i> , 2019 , 10, 1435-	1 4 42	4
106	Evaluating the effectiveness of multiple emission control measures on reducing volatile organic compounds in ambient air based on observational data: A case study during the 2010 Guangzhou Asian Games. <i>Science of the Total Environment</i> , 2020 , 723, 138171	10.2	4
105	The reductions of oxalate and its precursors in cloud droplets relative to wet particles. <i>Atmospheric Environment</i> , 2020 , 235, 117632	5.3	4
104	Enrichment of submicron sea-salt-containing particles in small cloud droplets based on single-particle mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 10469-10479	6.8	4
103	Physical and observable characteristics of cloud-to-ground lightning over the Pearl River Delta region of South China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 5986-5999	4.4	4
102	Rainforest-like Atmospheric Chemistry in a Polluted Megacity		4
101	Water-soluble organic carbon over the Pearl River Delta region during fallWinter: spatial variations and source apportionment		4
100	Large Variations in Hygroscopic Properties of Unconventional Mineral Dust. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1823-1830	3.2	4
99	One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison. <i>Science of the Total Environment</i> , 2020 , 743, 140689	10.2	4
98	Predominant effects of emission reduction by recording 8-year water-soluble ions in precipitation in Taiyuan, North China. <i>Atmospheric Pollution Research</i> , 2020 , 11, 1922-1932	4.5	4
97	Effect of Inorganic Salts on N-Containing Organic Compounds Formed by Heterogeneous Reaction of NO with Oleic Acid. <i>Environmental Science & Environmental Science & Environme</i>	10.3	4
96	Does atmospheric processing produce toxic Pb-containing compounds? A case study in suburban Beijing by single particle mass spectrometry. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121014	12.8	4
95	Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. <i>Science of the Total Environment</i> , 2021 , 754, 141812	10.2	4
94	Identification of PM2.5 sources contributing to both Brown carbon and reactive oxygen species generation in winter in Beijing, China. <i>Atmospheric Environment</i> , 2021 , 246, 118069	5.3	4
93	Comprehensive characterization of hygroscopic properties of methanesulfonates. <i>Atmospheric Environment</i> , 2020 , 224, 117349	5.3	3
92	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry 2020,		3
91	Polycyclic Aromatic Hydrocarbons, Heavy Metals, and Genotoxicity of the Suburban Soils from Guangzhou, China. <i>Polycyclic Aromatic Compounds</i> , 2013 , 33, 501-518	1.3	3

90	The Potential of Alkyl Amides as Novel Biomarkers and Their Application to Paleocultural Deposits in China. <i>Scientific Reports</i> , 2017 , 7, 14667	4.9	3
89	Nitric Oxide Emission Following Wetting of Dry Soils in Subtropical Humid Forests. <i>Pedosphere</i> , 2009 , 19, 692-699	5	3
88	A novel method for the stable carbon isotope analysis of atmospheric formaldehyde by means of cysteamine derivatization. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 2469-72	2.2	3
87	Characteristics and possible origins of atmospheric monoterpenes from nonliving plants in Guangzhou. <i>Science Bulletin</i> , 1999 , 44, 747-750		3
86	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _x in Beijing		3
85	Isoprene Mixing Ratios Measured at Twenty Sites in China During 2012\(\textit{\textit{0}} 14: Comparison With Model Simulation. \(\textit{Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033523} \)	4.4	3
84	Electrochemical recovery of low concentrated platinum (Pt) on nickel hexacyanoferrate nanoparticles film. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 111, 246-251	5.3	3
83	Technical note: Measurement of chemically resolved volume equivalent diameter and effective density of particles by AAC-SPAMS. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 5605-5613	6.8	3
82	Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol. <i>Atmospheric Environment</i> , 2021 , 252, 118295	5.3	3
81	Application of smog chambers in atmospheric process studies <i>National Science Review</i> , 2022 , 9, nwab1	0 260.8	3
80	Unexpected enhancement of ozone exposure and health risks during National Day in China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10347-10356	6.8	3
79	Chamber simulation on the formation of secondary organic aerosols (SOA) from diesel vehicle exhaust in China 2016 ,		3
78	Atmospheric PM blocking up autophagic flux in HUVECs via inhibiting Sntaxin-17 and LAMP2. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111450	7	3
77	13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China. <i>Forest Ecology and Management</i> , 2021 , 481, 118748	3.9	3
76	Stage-resolved in-cloud scavenging of submicron and BC-containing particles: A case study. <i>Atmospheric Environment</i> , 2021 , 244, 117883	5.3	3
75	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. <i>Faraday Discussions</i> , 2021 , 226, 382-408	3.6	3
74	Non-methane hydrocarbons in a controlled ecological life support system. <i>Chemosphere</i> , 2018 , 193, 207	' - 2.1 12	3
73	Introduction to Special Issue In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) 2018 ,		3

72	Real-world emissions of carbonyls from vehicles in an urban tunnel in south China. <i>Atmospheric Environment</i> , 2021 , 258, 118491	5.3	3
71	Abundance and Fractional Solubility of Aerosol Iron During Winter at a Coastal City in Northern China: Similarities and Contrasts Between Fine and Coarse Particles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	3
70	Oxidation Flow Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to Ambient SOA Formation <i>Environmental Science & Emphasize the Important Contribution of SylvoCs to Ambient Soa Formation.</i>	10.3	3
69	Significant Contribution of Primary Sources to Water-Soluble Organic Carbon During Spring in Beijing, China. <i>Atmosphere</i> , 2020 , 11, 395	2.7	2
68	Elevated levels of OH observed in haze events during wintertime in central Beijing 2020,		2
67	Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China. <i>Atmosphere</i> , 2020 , 11, 112	2.7	2
66	Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland. <i>Science of the Total Environment</i> , 2016 , 541, 1499-1503	10.2	2
65	Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies. <i>Sensors</i> , 2019 , 19,	3.8	2
64	Determination of trace volatile fatty acids in ambient air by capillary gas chromatographythass spectrometry in SIM mode. <i>International Journal of Environmental Analytical Chemistry</i> , 2008 , 88, 1107-1	1115	2
63	Size Distribution and Optical Properties of Ambient Aerosols during Autumn in Orleans, France. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 744-755	4.6	2
62	Measurement Report: important contributions of oxygenated compounds to emissions and chemistry of VOCs in urban air		2
61	Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China		2
60	Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloomdecay process in China based on radiocarbon and organic molecular tracers		2
59	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O3 and Peroxyacyl Nitrates. <i>Journal of Geophysical Research D: Atmospheres</i> ,e2021JD035296	4.4	2
58	Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. <i>Environmental Science & Environmental Scienc</i>	10.3	2
57	Seasonal variation of secondary organic aerosol in Nam Co, Central Tibetan Plateau		2
56	A case study on the characterization of non-methane hydrocarbons over the South China Sea: Implication of land-sea air exchange. <i>Science of the Total Environment</i> , 2020 , 717, 134754	10.2	2
55	Distribution of the Soil PAHs and Health Risk Influenced by Coal Usage Processes in Taiyuan City, Northern China. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	2

54	Volatile Organic Compounds Monitored Online at Three Photochemical Assessment Monitoring Stations in the Pearl River Delta (PRD) Region during Summer 2016: Sources and Emission Areas. <i>Atmosphere</i> , 2021 , 12, 327	2.7	2	
53	Seasonal Variations of Carbonyls and Their Contributions to the Ozone Formation in Urban Atmosphere of Taiyuan, China. <i>Atmosphere</i> , 2021 , 12, 510	2.7	2	
52	Supplementary material to "Budget of nitrous acid (HONO) and its impacts on atmospheric oxidation capacity at an urban site in the fall season of Guangzhou, China"		2	
51	Decabromodiphenyl Ether versus Decabromodiphenyl Ethane: Source, Fate, and Influencing Factors in a Coastal Sea Nearing Source Region. <i>Environmental Science & Environmental </i>	6 ¹ 7385	; ²	
50	Importance of secondary organic aerosol formation of <i></i>-pinene, limonene, and <i>m</i>-cresol comparing day- and nighttime radical chemistry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8479-8498	6.8	2	
49	pH-Responsive Fluorescence EEM to Titrate the Interaction between Fluorophores and Acid/Base Groups in Water-Soluble Organic Compounds of PM2.5. <i>Environmental Science and Technology</i> Letters, 2021 , 8, 108-113	11	2	
48	Filter-based absorption enhancement measurement for internally mixed black carbon particles over southern China. <i>Science of the Total Environment</i> , 2021 , 762, 144194	10.2	2	
47	Source, fate and budget of Dechlorane Plus (DP) in a typical semi-closed sea, China. <i>Environmental Pollution</i> , 2021 , 269, 116214	9.3	2	
46	Black Carbon Involved Photochemistry Enhances the Formation of Sulfate in the Ambient Atmosphere: Evidence From In Situ Individual Particle Investigation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035226	4.4	2	
45	Secondary organic aerosols produced from photochemical oxidation of secondarily evaporated biomass burning organic gases: Chemical composition, toxicity, optical properties, and climate effect. <i>Environment International</i> , 2021 , 157, 106801	12.9	2	
44	Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs <i>Journal of Environmental Sciences</i> , 2022 , 114, 322-333	6.4	2	
43	Physical and chemical characterization of urban grime: An impact on the NO uptake coefficients and N-containing product compounds <i>Science of the Total Environment</i> , 2022 , 155973	10.2	2	
42	A review of experimental techniques for aerosol hygroscopicity studies 2019,		1	
41	Methane emissions from on-road vehicles in China: a case study in an urban tunnel. <i>Environmental Research Communications</i> , 2020 , 2, 061005	3.1	1	
40	Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. <i>ChemSusChem</i> , 2020 , 13, 3543	8.3	1	
39	Molecular Composition and Photochemical Evolution of Water Soluble Organic Carbon (WSOC) Extracted from Field Biomass Burning Aerosols using High Resolution Mass Spectrometry 2019 ,		1	
38	Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients. <i>Science Bulletin</i> , 2000 , 45, 76-79		1	
37	Measurement report: Particle-size-dependent fluorescence properties of water-soluble organic compounds (WSOCs) and their atmospheric implications for the aging of WSOCs. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 465-479	6.8	1	

36	N₂O₅ uptake onto saline mineral dust: a potential missing source of tropospheric ClNO₂ in inland China. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1845-1859	6.8	1
35	Effects of pH on light absorption properties of water-soluble organic compounds in particulate matter emitted from typical emission sources. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127688	12.8	1
34	Contribution of Vehicle Emission and NO Surface Conversion to Nitrous Acid (HONO) in Urban Environments: Implications from Tests in a Tunnel. <i>Environmental Science & Environmental &</i>	10.3	1
33	Distribution and sources of PM-bound free silica in the atmosphere of hyper-arid regions in Hotan, North-West China <i>Science of the Total Environment</i> , 2021 , 810, 152368	10.2	1
32	A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China		1
31	Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects		1
30	Chemical and stable carbon isotopic composition of PM _{2.5} from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy		1
29	Measurements of higher alkanes using NO⁺PTR-ToF-MS: significant contributions of higher alkanes to secondary organic aerosols in China 2020 ,		1
28	Heterogeneous Reaction of CaCO3 With NO2 at Different Relative Humidities: Kinetics, Mechanisms, and Impacts on Aerosol Hygroscopicity. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034826	4.4	1
27	Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan, China. <i>Atmospheric Pollution Research</i> , 2021 , 12, 101083	4.5	1
26	PM2.5-bound unresolved complex mixtures (UCM) in the Pearl River Delta region: Abundance, atmospheric processes and sources. <i>Atmospheric Environment</i> , 2020 , 226, 117407	5.3	1
25	Volatile organic compounds at a rural site in Beijing: Influence of temporary emission control and wintertime heating 2018 ,		1
24	Contributions of aerosol chemical composition and sources to light extinction during haze and non-haze days in Taiyuan, China. <i>Atmospheric Pollution Research</i> , 2021 , 12, 101140	4.5	1
23	Substantial changes of chemical composition and sources of fine particles during the period of COVID-19 pandemic in Taiyuan, Northern China. <i>Air Quality, Atmosphere and Health</i> , 2021 , 1-12	5.6	1
22	Emissions and light absorption of carbonaceous aerosols from on-road vehicles in an urban tunnel in south China. <i>Science of the Total Environment</i> , 2021 , 790, 148220	10.2	1
21	Particles liquid water and acidity determine formation of secondary inorganic ions in Urumqi, NW China. <i>Atmospheric Research</i> , 2021 , 260, 105622	5.4	1
20	Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4117-4128	6.8	1
19	The formation and mitigation of nitrate pollution: comparison between urban and suburban environments. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4539-4556	6.8	1

18	Chemical composition and sources of amines in PM in an urban site of PRD, China <i>Environmental Research</i> , 2022 , 113261	7.9	1
17	Evaluation on the enhanced solid biofuel from co-hydrothermal carbonization of pharmaceutical biowastes with lignite. <i>Fuel</i> , 2022 , 318, 123626	7.1	1
16	Design and characterization of a semi-open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from plants. <i>Atmospheric Measurement Techniques</i> , 2022 , 15, 79-5	93 ⁴	0
15	Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China <i>Science of the Total Environment</i> , 2022 , 823, 153720	10.2	O
14	Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 16631-16644	6.8	0
13	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6315-6330	6.8	О
12	Emission factors of ammonia for on-road vehicles in urban areas from a tunnel study in south China with laser-absorption based measurements. <i>Environmental Pollution</i> , 2021 , 280, 116972	9.3	0
11	Hygroscopicity and cloud condensation nucleation activities of hydroxyalkylsulfonates <i>Science of the Total Environment</i> , 2022 , 154767	10.2	O
10	Secondary organic aerosol formation from photooxidation of CH under the presence of NH: Effects of seed particles <i>Environmental Research</i> , 2022 , 113064	7.9	O
9	Influence of meteorological parameters and oxidizing capacity on characteristics of airborne particulate amines in an urban area of the Pearl River Delta, China <i>Environmental Research</i> , 2022 , 212, 113212	7.9	O
8	Characteristics of Volatile Organic Compounds in the Pearl River Delta Region, China: Chemical Reactivity, Source, and Emission Regions. <i>Atmosphere</i> , 2022 , 13, 9	2.7	0
7	The optical properties and in-situ observational evidence for the formation of brown carbon in clouds. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4827-4839	6.8	O
6	Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China. <i>Atmosphere</i> , 2022 , 13, 781	2.7	0
5	Measurement report: Hygroscopic growth of ambient fine particles measured at five sites in China. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 6773-6786	6.8	O
4	Evolution of light absorption properties during photochemical aging of straw open burning aerosols. <i>Science of the Total Environment</i> , 2022 , 838, 156431	10.2	0
3	Characteristics of Non-Methane Hydrocarbons in the Atmosphere of Guangzhou. <i>Applied Mechanics and Materials</i> , 2011 , 66-68, 59-64	0.3	
2	Variation of Particle-Induced Oxidative Potential of PM2.5 in Xinjiang, NW-China. <i>Atmosphere</i> , 2021 , 12, 1028	2.7	
1	Role of Manganese Doping TiO2 Hollow Spheres under Vacuum Ultraviolet Irradiation. <i>Kinetics and Catalysis</i> , 2021 , 62, 74-81	1.5	