List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3344311/publications.pdf Version: 2024-02-01

RINA K DUKOR

#	Article	IF	CITATIONS
1	Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. Chirality, 2003, 15, 743-758.	1.3	483
2	Reassessment of the random coil conformation: Vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers, 1991, 31, 1747-1761.	1.2	265
3	Determination of Absolute Configuration of Chiral Molecules Using Vibrational Optical Activity: A Review. Applied Spectroscopy, 2011, 65, 699-723.	1.2	259
4	A Confidence Level Algorithm for the Determination of Absolute Configuration Using Vibrational Circular Dichroism or Raman Optical Activity. ChemPhysChem, 2011, 12, 1542-1549.	1.0	184
5	Vibrational Circular Dichroism Shows Unusual Sensitivity to Protein Fibril Formation and Development in Solution. Journal of the American Chemical Society, 2007, 129, 12364-12365.	6.6	153
6	Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?. Journal of the American Chemical Society, 2014, 136, 2302-2312.	6.6	143
7	Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chemical Communications, 2010, 46, 7154.	2.2	136
8	Normal and Reversed Supramolecular Chirality of Insulin Fibrils Probed by Vibrational Circular Dichroism at the Protofilament Level of Fibril Structure. Biophysical Journal, 2012, 103, 522-531.	0.2	93
9	Vibrational circular dichroism spectroscopy of selected oligopeptide conformations. Bioorganic and Medicinal Chemistry, 1999, 7, 133-141.	1.4	91
10	Optically Active Nanostructured ZnO Films. Angewandte Chemie - International Edition, 2015, 54, 15170-15175.	7.2	82
11	Spontaneous inter-conversion of insulin fibril chirality. Chemical Communications, 2012, 48, 2837.	2.2	81
12	A novel heterodimeric antimicrobial peptide from the tree-frogPhyllomedusa distincta. FEBS Letters, 2001, 494, 85-89.	1.3	70
13	Conformational study of sequential Lys and Leu based polymers and oligomers using vibrational and electronic CD spectra. Biopolymers, 1994, 34, 1115-1121.	1.2	64
14	Reconciliation of Chemical, Enzymatic, Spectroscopic and Computational Data To Assign the Absolute Configuration of the DNA Base Lesion Spiroiminodihydantoin. Journal of the American Chemical Society, 2013, 135, 18191-18204.	6.6	64
15	Direct Observation of Oddâ^'Even Effect for Chiral Alkyl Alcohols in Solution Using Vibrational Circular Dichroism Spectroscopy. Journal of the American Chemical Society, 2004, 126, 194-198.	6.6	62
16	Determination of Enantiomeric Excess in Samples of Chiral Molecules Using Fourier Transform Vibrational Circular Dichroism Spectroscopy:Â Simulation of Real-Time Reaction Monitoring. Analytical Chemistry, 2004, 76, 6956-6966.	3.2	60
17	Fourier transform vibrational circular dichroism from 800 to 10,000cmâ^'1: Near-IR-VCD spectral standards for terpenes and related molecules. Vibrational Spectroscopy, 2006, 42, 254-272.	1.2	58
18	Mutarotation studies of poly-L-proline using FTIR, electronic and vibrational circular dichroism. Biospectroscopy, 1998, 2, 83-100.	0.7	56

#	Article	IF	CITATIONS
19	Comparison of .alphalactalbumin and lysozyme using vibrational circular dichroism. Evidence for a difference in crystal and solution structures. Biochemistry, 1991, 30, 10479-10485.	1.2	54
20	Vibrational circular dichroism spectra of unblocked proline oligomers. International Journal of Peptide and Protein Research, 1991, 38, 198-203.	0.1	51
21	Dual Source Fourier Transform Polarization Modulation Spectroscopy: An Improved Method for the Measurement of Circular and Linear Dichroism. Applied Spectroscopy, 2004, 58, 647-654.	1.2	43
22	Preparation of cruciferous phytoalexin related metabolites, (â^')-dioxibrassinin and (â'')-3-cyanomethyl-3-hydroxyoxindole, and determination of their absolute configurations by vibrational circular dichroism (VCD). Tetrahedron Letters, 2003, 44, 6017-6020.	0.7	41
23	Extension of Fourier Transform Vibrational Circular Dichroism into the Near-Infrared Region: Continuous Spectral Coverage from 800 to 10 000 cmâ^'1. Applied Spectroscopy, 2004, 58, 1057-1064.	1.2	39
24	Empirical studies of protein secondary structure by vibrational circular dichroism and related techniques. α-Lactalbumin and lysozyme as examples. Faraday Discussions, 1994, 99, 263-285.	1.6	37
25	Effects of Bound Water on FTIR Spectra of Glycinin. Journal of Agricultural and Food Chemistry, 1996, 44, 2220-2224.	2.4	36
26	Supramolecular chirality in peptide microcrystals. Chemical Communications, 2015, 51, 89-92.	2.2	36
27	Levels of supramolecular chirality of polyglutamine aggregates revealed by vibrational circular dichroism. FEBS Letters, 2013, 587, 1638-1643.	1.3	31
28	Vibrational circular dichroism study for natural bioactive schizandrin and reassignment of its absolute configuration. Tetrahedron Letters, 2014, 55, 2965-2968.	0.7	31
29	Near-Infrared Excited Raman Optical Activity. Applied Spectroscopy, 2007, 61, 1103-1106.	1.2	30
30	Observation of Fourier Transform Near-Infrared Vibrational Circular Dichroism to 6150 cmâ^'1. Applied Spectroscopy, 2003, 57, 1245-1249.	1.2	28
31	Near-Infrared and Mid-Infrared Fourier Transform Vibrational Circular Dichroism of Proteins in Aqueous Solution. Applied Spectroscopy, 2010, 64, 615-626.	1.2	27
32	Unravelling a Direct Role for Polysaccharide βâ€ 5 trands in the Higher Order Structure of Physical Hydrogels. Angewandte Chemie - International Edition, 2017, 56, 4603-4607.	7.2	27
33	Vibrational Circular Dichroism Analysis Reveals a Conformational Change of the Baccatin III Ring of Paclitaxel:  Visualization of Conformations Using a New Code for Structureâ^'Activity Relationships. Journal of Organic Chemistry, 2008, 73, 2367-2372.	1.7	26
34	Determination of the Absolute Configuration of (â^)-Mirtazapine by Vibrational Circular Dichroism. Helvetica Chimica Acta, 2002, 85, 1160.	1.0	25
35	Reduction of linear birefringence in vibrational circular dichroism measurement: use of a rotating half-wave plate. Theoretical Chemistry Accounts, 2008, 119, 69-79.	0.5	25
36	Analysis of the molten globule state of bovine α-lactalbumin by using vibrational circular dichroism. Vibrational Spectroscopy, 2012, 60, 68-72.	1.2	25

#	Article	IF	CITATIONS
37	Vibrational Circular Dichroism Spectra of Lysozyme Solutions: Solvent Effects on Thermal Denaturation Processes. Journal of Physical Chemistry B, 2013, 117, 2645-2652.	1.2	25
38	A Revised Conformational Code for the Exhaustive Analysis of Conformers with One-to-One Correspondence between Conformation and Code: Application to the VCD Analysis of (<i>S</i>)-Ibuprofen. Journal of Organic Chemistry, 2009, 74, 1231-1236.	1.7	24
39	Rapid Filament Supramolecular Chirality Reversal of HET-s (218–289) Prion Fibrils Driven by pH Elevation. Journal of Physical Chemistry B, 2015, 119, 8521-8525.	1.2	24
40	A Vibrational Circular Dichroism Microsampling Accessory: Mapping Enhanced Vibrational Circular Dichroism in Amyloid Fibril Films. Applied Spectroscopy, 2017, 71, 1117-1126.	1.2	23
41	Isolation, Total Synthesis, and Absolute Configuration Determination of Renoprotective Dimeric <i>N</i> -Acetyldopamine–Adenine Hybrids from the Insect <i>Aspongopus chinensis</i> . Organic Letters, 2020, 22, 5726-5730.	2.4	23
42	Enantiomeric Excess Determination by Fourier Transform Near-Infrared Vibrational Circular Dichroism Spectroscopy: Simulation of Real-Time Process Monitoring. Applied Spectroscopy, 2005, 59, 1114-1124.	1.2	21
43	Origin of enhanced VCD in amyloid fibril spectra: Effect of deuteriation and pH. Chirality, 2017, 29, 469-475.	1.3	21
44	Structural studies on McN-5652-X, a high-affinity ligand for the serotonin transporter in mammalian brain. Bioorganic and Medicinal Chemistry, 2003, 11, 2463-2470.	1.4	19
45	Fourier transform near-infrared vibrational circular dichroism used for on-line monitoring the epimerization of 2,2-dimethyl-1,3-dioxolane-4-methanol: A pseudo racemization reaction. Chirality, 2006, 18, 775-782.	1.3	19
46	Conformational study of linear alternating and mixedD- andL-proline oligomers using electronic and vibrational CD and fourier transform IR. Biopolymers, 1995, 36, 623-631.	1.2	18
47	Determination of the absolute configuration of a key tricyclic component of a novel vasopressin receptor antagonist by use of vibrational circular dichroism. Chirality, 2002, 14, 215-219.	1.3	18
48	Determination of Molecular Stereochemistry Using Vibrational Circular Dichroism Spectroscopy: Absolute Configuration and Solution Conformation of 5-Formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carboxylic Acid Lactone. Chemical Record, 2003, 3, 112-119.	2.9	18
49	Vibrational circular dichroism studies of epidermal growth factor and basic fibroblast growth factor. Archives of Biochemistry and Biophysics, 1992, 298, 678-681.	1.4	17
50	Raman optical activity of flagellar filaments of Salmonella: Unusually intense ROA from L-type self-assembled protein filaments and their possible higher level chiral organization. Vibrational Spectroscopy, 2008, 48, 65-68.	1.2	16
51	Vibrational optical activity in chiral analysis. , 2006, , 505-544.		15
52	Active site studies of bovine α1→3-galactosyltransferase and its secondary structure prediction. BBA - Proteins and Proteomics, 2000, 1480, 222-234.	2.1	12
53	Structural determination of molecular stereochemistry using VCD spectroscopy and a conformational code: Absolute configuration and solution conformation of a chiral liquid pesticide, $(\langle i \rangle R \langle i \rangle) \hat{a} \in (+) \hat{a} \in ($	1.3	12
54	Data Mining of Supersecondary Structure Homology between Light Chains of Immunogloblins and MHC Molecules: Absence of the Common Conformational Fragment in the Human IgM Rheumatoid Factor. Journal of Chemical Information and Modeling, 2013, 53, 584-591.	2.5	9

#	Article	IF	CITATIONS
55	Unravelling a Direct Role for Polysaccharide βâ€5trands in the Higher Order Structure of Physical Hydrogels. Angewandte Chemie, 2017, 129, 4674-4678.	1.6	8
56	(1S,7S)-7-Methyl-6,9-diazatricyclo[6,3,0,01,6]tridecane-5,10-dione, a tricyclic spirodilactam containing non-planar amide groups: Synthesis, NMR, crystal structure, absolute configuration, electronic and vibrational circular dichroism. Collection of Czechoslovak Chemical Communications, 1988, 53, 2447-2472.	1.0	7
5 7	Vibrational Optical Activity in Chiral Analysis. , 2018, , 201-247.		7
58	Raman spectroscopic study on the L-type straight flagellar filament of Salmonella. Vibrational Spectroscopy, 2006, 42, 192-194.	1.2	6
59	SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2. ACS Omega, 2020, 5, 30556-30567.	1.6	6
60	Conformational Variability Correlation Prediction of Transmissibility and Neutralization Escape Ability for Multiple Mutation SARS-CoV-2 Strains using SSSCPreds. ACS Omega, 2021, 6, 19323-19329.	1.6	6
61	The Use of Dual Polarization Modulation in Vibrational Circular Dichroism Spectroscopy. ACS Symposium Series, 2002, , 79-88.	0.5	4
62	Determination of Secondary Structures of Proteins Using Vibrational Circular Dichroism. ACS Symposium Series, 1994, , 61-70.	0.5	3
63	Threeâ€Dimensional Chemical Structure Search Using the Conformational Code for Organic Molecules (CCOM) Program. Chirality, 2016, 28, 370-375.	1.3	3
64	The determination of enantiomeric purity and absolute configuration by vibrational circular dichroism spectroscopy. , 1998, , .		2
65	A Method For Analysis Of Clinical Tissue Samples Using Ft-Ir Microspectroscopic Imaging. Microscopy and Microanalysis, 1999, 5, 68-69.	0.2	1
66	Chiroptical Properties and Conformation of Four Lasiocepsin-Related Antimicrobial Peptides: Structural Role of Disulfide Bridges. Symmetry, 2020, 12, 812.	1.1	1
67	Structural Studies on McN-5652-X (I), a High-Affinity Ligand for the Serotonin Transporter in Mammalian Brain ChemInform, 2003, 34, no.	0.1	0
68	Facss 2003, Fort Lauderdale, October 19–23. Applied Spectroscopy, 2003, 57, 250A-250A.	1.2	0
69	Infrared Spectral Imaging of H&E-Stained Breast Tissue Biopsies. Microscopy and Microanalysis, 2004, 10, 182-183.	0.2	0