Wagner L Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3344054/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroelectrolytic Disorder in COVID-19 patients: Evidence Supporting the Involvement of Subfornical Organ and Paraventricular Nucleus of the Hypothalamus. Neuroscience and Biobehavioral Reviews, 2021, 124, 216-223.	2.9	10
2	Effects of gonadotropin inducible ovarian transcription factor 1 in the paraventricular nucleus on fluid intake after dehydration of ovariectomized female rats. Experimental Physiology, 2021, 106, 2391-2399.	0.9	0
3	Sex differences in body composition, metabolismâ€related hormones, and energy homeostasis during aging in Wistar rats. Physiological Reports, 2020, 8, e14597.	0.7	21
4	Behavioral, cardiovascular and endocrine alterations induced by chronic stress in rats fed a high-fat diet. Physiology and Behavior, 2020, 223, 113013.	1.0	5
5	Sex- and age-dependent differences in the hormone and drinking responses to water deprivation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R567-R578.	0.9	11
6	The interplay between Angiotensin II, TLR4 and hypertension. Pharmacological Research, 2017, 120, 88-96.	3.1	101
7	A Functional Coupling Between Carbon Monoxide and Nitric Oxide Contributes to Increased Vasopressin Neuronal Activity in Heart Failure rats. Endocrinology, 2016, 157, 2052-2066.	1.4	12
8	Gaseous Modulators in the Control of the Hypothalamic Neurohypophyseal System. Physiology, 2015, 30, 127-138.	1.6	21
9	Brain Innate Immunity Regulates Hypothalamic Arcuate Neuronal Activity and Feeding Behavior. Endocrinology, 2015, 156, 1303-1315.	1.4	69
10	Carbon Monoxide and Nitric Oxide interactions in Magnocellular Neurosecretory Neurones during Water Deprivation. Journal of Neuroendocrinology, 2015, 27, 111-122.	1.2	12
11	Neuropeptide Y acts in the paraventricular nucleus to suppress sympathetic nerve activity and its baroreflex regulation. Journal of Physiology, 2014, 592, 1655-1675.	1.3	33
12	Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis. Brazilian Journal of Medical and Biological Research, 2013, 46, 327-338.	0.7	17
13	Cannabinoid CB1 receptor restrains accentuated activity of hypothalamic corticotropin-releasing factor and brainstem tyrosine hydroxylase neurons in endotoxemia-induced hypophagia in rats. Neuropharmacology, 2012, 63, 154-160.	2.0	9
14	Enhanced Expression of Heme Oxygenase†and Carbon Monoxide Excitatory Effects in Oxytocin and Vasopressin Neurones During Water Deprivation. Journal of Neuroendocrinology, 2012, 24, 653-663.	1.2	23
15	Cholecystokinin and hypothalamic corticotrophin-releasing factor participate in endotoxin-induced hypophagia. Experimental Physiology, 2011, 96, 439-450.	0.9	7
16	Central nitrergic system regulation of neuroendocrine secretion, fluid intake and blood pressure induced by angiotensin-II. Behavioral and Brain Functions, 2010, 6, 64.	1.4	24
17	Cellular distribution of hemeâ€oxygenase (HO), a carbon monoxide (CO)â€producing enzyme, in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. FASEB Journal, 2009, 23, 792.13.	0.2	0
18	Acute administration of 5HT1a serotonin receptor agonist, in the dorsal raphe nuclei (DRN) or systemically, increases whereas peripheral chronic treatment inhibits sodium intake in rats. FASEB Journal, 2008, 22, .	0.2	0

WAGNER L REIS

#	Article	IF	CITATIONS
19	Glucocorticoid modulation of atrial natriuretic peptide, oxytocin, vasopressin and Fos expression in response to osmotic, angiotensinergic and cholinergic stimulation. Neuroscience, 2007, 147, 247-257.	1.1	44
20	Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious rats. Experimental Physiology, 2007, 92, 903-911.	0.9	33
21	The role of carbon monoxide and nitric oxide in hyperosmolality-induced atrial natriuretic peptide release by hypothalamus in vitro. Brain Research, 2004, 1016, 33-39.	1.1	20
22	Nitrergic modulation of vasopressin, oxytocin and atrial natriuretic peptide secretion in response to sodium intake and hypertonic blood volume expansion. Brazilian Journal of Medical and Biological Research, 2002, 35, 1101-1109.	0.7	38