Stevan Dj J Nemoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3343268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat transfer analysis of a two-dimensional rectangular porous radiant burner. International Communications in Heat and Mass Transfer, 2006, 33, 467-474.	5.6	50
2	Experimental and numerical investigation of gaseous fuel combustion in swirl chamber. International Journal of Heat and Mass Transfer, 2005, 48, 4623-4632.	4.8	29
3	Numerical simulation of porous burners and hole plate surface burners. Thermal Science, 2004, 8, 3-18.	1.1	24
4	Prediction of Coal Primary Fragmentation and Char Particle Size Distribution in Fluidized Bed. Energy & Fuels, 2013, 27, 5488-5494.	5.1	22
5	Mapping the potential for decentralized energy generation based on RES in Western Balkans. Thermal Science, 2007, 11, 7-26.	1.1	21
6	Furnace for biomass combustion – Comparison of model with experimental data. International Journal of Heat and Mass Transfer, 2012, 55, 4312-4317.	4.8	15
7	Investigation of the cigar burner combustion system for baled biomass. Biomass and Bioenergy, 2013, 58, 10-19.	5.7	14
8	The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide. Hemijska Industrija, 2016, 70, 287-298.	0.7	14
9	Influence of biomass furnace volume change on flue gases burn out process. Renewable Energy, 2015, 76, 1-6.	8.9	13
10	Experimental method for determining Forchheimer equation coefficients related to flow of air through the bales of soy straw. International Journal of Heat and Mass Transfer, 2011, 54, 4300-4306.	4.8	11
11	Experimental investigation on the kinetics of biomass combustion in vertical tube reactor. Journal of the Energy Institute, 2019, 92, 1077-1090.	5.3	9
12	Numerical model of gaseous fuel jet injection into a fluidized furnace. International Journal of Heat and Mass Transfer, 2009, 52, 3427-3438.	4.8	7
13	Euler-Euler granular flow model of liquid fuels combustion in a fluidized reactor. Journal of the Serbian Chemical Society, 2015, 80, 377-389.	0.8	6
14	Numerical simulation of the influence of stationary louver and coal particle size on distribution of pulverized coal to the feed ducts of a power plant burner. Thermal Science, 2009, 13, 79-90.	1.1	6
15	Experimental and numerical investigation of premixed acetylene flame. International Journal of Heat and Mass Transfer, 2006, 49, 4023-4032.	4.8	5
16	Combustion of low grade fractions of Lubnica coal in fluidized bed. Thermal Science, 2012, 16, 297-311.	1.1	5
17	Experimental determination thermo physical characteristics of balled biomass. Energy, 2012, 45, 350-357.	8.8	5
18	Determination of thermal conductivity of baled agricultural biomass. Renewable and Sustainable Energy Reviews, 2016, 58, 876-884.	16.4	3

Stevan Dj J Nemoda

#	Article	IF	CITATIONS
19	Experimental and numerical study on combustion of baled biomass in cigar burners and effects of flue gas re-circulation. Thermal Science, 2016, 20, 151-165.	1.1	3
20	Modeling of bubble break-up in stirred tanks. Thermal Science, 2004, 8, 29-50.	1.1	2
21	Analysis of prescriped limits of NOx emissions from biomass combustion in selected European countries and in Serbia. Savremena Poljoprivredna Tehnika, 2016, 42, 207-215.	0.2	2
22	Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed. Thermal Science, 2016, 20, 133-149.	1.1	2
23	Numerical simulation of non-conventional liquid fuels feeding in a bubbling fluidized bed combustor. Thermal Science, 2013, 17, 1163-1179.	1.1	1
24	DETERMINATION OF THE WALL VARIABLES WITHIN THE ZONAL MODEL OF RADIATION INSIDE A PULVERIZED COAL-FIRED FURNACE. Facta Universitatis, Series: Mechanical Engineering, 2018, 16, 219.	4.6	1
25	Modeling of the process in the experimental chamber for denitrification of biomase combustion products. Savremena Poljoprivredna Tehnika, 2017, 43, 111-120.	0.2	1
26	Research in the fluidized bed combustion in the Laboratory for thermal engineering and energy - Part B: Achievements in technology implementation. Thermal Science, 2019, 23, 1655-1667.	1.1	1
27	Results of combustion of different waste fuel in fluidized bad. Reciklaža I Održivi Razvoj, 2014, 7, 22-29.	0.5	Ο
28	Fluidized combustion chamber CFD simulation based on Euler-Euler granular flow model. Termotehnika, 2014, 40, 19-33.	0.0	0
29	The study of pressure variations at the bottom of a vibrating plate extraction column. Collection of Czechoslovak Chemical Communications, 1986, 51, 1016-1026.	1.0	Ο
30	Effects of types of fuels on thermo-physical properties of baled biomass. Savremena Poljoprivredna Tehnika, 2016, 42, 197-206.	0.2	0
31	Analysis and selection of methodology for determination of the agricultural biomas combustion kinetics. Savremena Poljoprivredna Tehnika, 2017, 43, 131-140.	0.2	0
32	Possibility of non catalytic reduction of NOx by ammonia at baled biomass combustion in pushing furnace. Savremena Poljoprivredna Tehnika, 2017, 43, 101-110.	0.2	0
33	ProraÄun i dimenzionisanje vrtložnih gorionika koriÅ;ćenjem namenskog softvera. Procesna Tehnika, 2017, 30, 357.	0.3	0
34	2D CFD numeriÄka simulacija fluidizacione komore sagorevanja bazirane na Euler-Euler granularnom modelu. Procesna Tehnika, 2017, 30, 277.	0.3	0
35	Investigation of biomass gasification in an experimental reactor with a fluidized bed. Savremena Poljoprivredna Tehnika, 2018, 44, 21-28.	0.2	0
36	Qualitative and quantitative analysis of PAHs in biomass ash by LC/DAD. Savremena Poljoprivredna Tehnika, 2018, 44, 29-36.	0.2	0

Stevan Dj J Nemoda

#	Article	IF	CITATIONS
37	The application of chemical kinetic models in numerical simulation of the process of non-catalitic reduction of NOX with amonia in biomass combustion products. Savremena Poljoprivredna Tehnika, 2018, 44, 37-44.	0.2	0
38	Two-dimensional mathematical model of liquid fuel combustion in bubbling fluidized bed applied for a fluidized furnace numerical simulation. Thermal Science, 2018, 22, 1121-1135.	1.1	0
39	Analysis of the influence of fuel characteristics and temperature conditions on the emission of harmful products of biomass combustion. Savremena Poljoprivredna Tehnika, 2018, 44, 11-20.	0.2	0
40	Research in the fluidized bed combustion in the Laboratory for thermal engineering and energy - Part A: Achievements in targeted fundamental research. Thermal Science, 2019, 23, 1637-1653.	1.1	0
41	Modeling of transport processes in the cigarette principle combustion furnace. Thermal Science, 2019, 23, 1499-1510.	1.1	0
42	Application of analytical and CFD models of liquid fuels combustion in a fluidized bed. Thermal Science, 2019, 23, 1627-1636.	1.1	0