Rajan Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3343230/publications.pdf

Version: 2024-02-01

47	5,150	29 h-index	48
papers	citations		g-index
56	56	56	8424
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. Genome Biology, 2022, 23, 90.	8.8	13
2	Î ² -Hydroxybutyrate suppresses colorectal cancer. Nature, 2022, 605, 160-165.	27.8	120
3	A LAMP sequencing approach for high-throughput co-detection of SARS-CoV-2 and influenza virus in human saliva. ELife, 2022, $11,\ldots$	6.0	6
4	S-Nitrosylation of Histone Deacetylase 2 by Neuronal Nitric Oxide Synthase as a Mechanism of Diastolic Dysfunction. Circulation, 2021, 143, 1912-1925.	1.6	28
5	Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 2021, 28, 938-954.e9.	11.1	61
6	A transcriptional switch governs fibroblast activation in heart disease. Nature, 2021, 595, 438-443.	27.8	100
7	In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nature Communications, 2021, 12, 4291.	12.8	32
8	Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity inÂvitro. Cell Systems, 2021, 12, 885-899.e8.	6.2	17
9	Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 2021, 7, eabj3035.	10.3	16
10	Not all stress is bad for your heart. Science, 2021, 374, 264-265.	12.6	3
10	Not all stress is bad for your heart. Science, 2021, 374, 264-265. BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492.	12.6 21.4	3 48
	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53,		
11	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492.	21.4	48
11 12	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492. Landscape of Hopx expression in cells of the immune system. Heliyon, 2021, 7, e08311. A Balance Between Intermediate Filaments and Microtubules Maintains Nuclear Architecture in the	21.4	48
11 12 13	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492. Landscape of Hopx expression in cells of the immune system. Heliyon, 2021, 7, e08311. A Balance Between Intermediate Filaments and Microtubules Maintains Nuclear Architecture in the Cardiomyocyte. Circulation Research, 2020, 126, e10-e26. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb	21.4 3.2 4.5	48 4 70
11 12 13	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492. Landscape of Hopx expression in cells of the immune system. Heliyon, 2021, 7, e08311. A Balance Between Intermediate Filaments and Microtubules Maintains Nuclear Architecture in the Cardiomyocyte. Circulation Research, 2020, 126, e10-e26. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Molecular Cell, 2020, 77, 67-81.e7. BRD4 (Bromodomain-Containing Protein 4) Interacts with GATA4 (GATA Binding Protein 4) to Govern	21.4 3.2 4.5	48 4 70 66
11 12 13 14	BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 2021, 53, 1480-1492. Landscape of Hopx expression in cells of the immune system. Heliyon, 2021, 7, e08311. A Balance Between Intermediate Filaments and Microtubules Maintains Nuclear Architecture in the Cardiomyocyte. Circulation Research, 2020, 126, e10-e26. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Molecular Cell, 2020, 77, 67-81.e7. BRD4 (Bromodomain-Containing Protein 4) Interacts with GATA4 (GATA Binding Protein 4) to Govern Mitochondrial Homeostasis in Adult Cardiomyocytes. Circulation, 2020, 142, 2338-2355. Picking Winners and Losers: Cell Competition in Tissue Development and Homeostasis. Trends in	21.4 3.2 4.5 9.7	48 4 70 66 31

#	Article	IF	CITATIONS
19	Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9me2 domains. Development (Cambridge), 2019, 146, .	2.5	18
20	A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell, 2019, 177, 654-668.e15.	28.9	186
21	Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4362-4371.	7.1	116
22	H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 2019, 8, .	6.0	81
23	Competent for commitment: you've got to have heart!. Genes and Development, 2018, 32, 4-13.	5.9	10
24	Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Developmental Biology, 2018, 440, 22-30.	2.0	26
25	In utero CRISPR-mediated therapeutic editing of metabolic genes. Nature Medicine, 2018, 24, 1513-1518.	30.7	169
26	Beating the odds: programming proliferation in the mammalian heart. Genome Medicine, 2018, 10, 36.	8.2	2
27	Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nature Communications, 2017, 8, 14428.	12.8	68
28	Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell, 2017, 171, 573-587.e14.	28.9	162
29	Pdgfr $\hat{l}\pm$ functions in endothelial-derived cells to regulate neural crest cells and development of the great arteries. DMM Disease Models and Mechanisms, 2017, 10, 1101-1108.	2.4	14
30	Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Reports, 2017, 20, 1597-1608.	6.4	50
31	Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 2017, 21, 78-90.e6.	11.1	280
32	EZ Switch From EZH2 to EZH1. Circulation Research, 2017, 121, 91-94.	4.5	9
33	Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell, 2016, 166, 451-467.	28.9	367
34	Circadian control of bile acid synthesis by a KLF15-Fgf15 axis. Nature Communications, 2015, 6, 7231.	12.8	68
35	The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice. Stem Cell Reports, 2015, 5, 125-138.	4.8	21
36	Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells That Require Hopx To Inhibit Intrinsic IL-2 Expression. Journal of Immunology, 2015, 195, 1489-1497.	0.8	38

#	Article	IF	CITATIONS
37	Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 2015, 348, aaa6071.	12.6	132
38	Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nature Communications, 2015, 6, 6727.	12.8	254
39	Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Research, 2015, 15, 522-529.	0.7	41
40	Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development (Cambridge), 2015, 142, 2962-71.	2.5	79
41	Single-Cell Analysis of Proxy Reporter Allele-Marked Epithelial Cells Establishes Intestinal Stem Cell Hierarchy. Stem Cell Reports, 2014, 3, 876-891.	4.8	93
42	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	11.1	748
43	<i>Hopx</i> expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development (Cambridge), 2013, 140, 1655-1664.	2.5	65
44	Interconversion Between Intestinal Stem Cell Populations in Distinct Niches. Science, 2011, 334, 1420-1424.	12.6	638
45	Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. Journal of Clinical Investigation, 2011, 121, 422-430.	8.2	142
46	Notch and cardiac outflow tract development. Annals of the New York Academy of Sciences, 2010, 1188, 184-190.	3.8	48
47	Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. Journal of Clinical Investigation, 2009, 119, 1986-96.	8.2	155