
Tiago Benedito Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/334271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses, 2022, 2, 113-135.	4.8	149
2	Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry, 2011, 49, 441-448.	5.8	108
3	Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica) Tj ETQq1	0.784314	rgBT /Overic
4	Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydrate Polymers, 2014, 112, 686-694.	10.2	46
5	Nitrogen Starvation, Salt and Heat Stress in Coffee (Coffea arabica L.): Identification and Validation of New Genes for qPCR Normalization. Molecular Biotechnology, 2013, 53, 315-325.	2.4	42
6	Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genetics and Molecular Biology, 2015, 38, 182-190.	1.3	40
7	Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis. PLoS ONE, 2017, 12, e0169595.	2.5	35
8	An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Functional and Integrative Genomics, 2019, 19, 151-169.	3.5	28
9	Changes in growth, oxidative metabolism and essential oil composition of lemon balm (Melissa) Tj ETQq1 1 0.78	4314 rgBT	/Qyerlock 1(
10	Expression patterns of three αâ€expansin isoforms in <i>Coffea arabica</i> during fruit development. Plant Biology, 2011, 13, 462-471.	3.8	20
11	Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genetics and Molecular Biology, 2017, 40, 346-359.	1.3	10
12	Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination. Physiology and Molecular Biology of Plants, 2019, 25, 511-522.	3.1	10
13	Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge. Plant Gene, 2020, 24, 100258.	2.3	10
14	FISH using a gag-like fragment probe reveals a common Ty3-gypsy-like retrotransposon in genome of Coffea species. Genome, 2012, 55, 825-833.	2.0	9
15	Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L Genetics and Molecular Research, 2012, 11, 3186-3197.	0.2	9
16	Transcriptional patterns of <i>Coffea arabica</i> L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. PeerJ, 2020, 8, e8320.	2.0	8
17	Genome-Wide Identification, Evolution, and Expression Profile of Aquaporin Genes in Coffea canephora in Response to Water Deficit. Plant Molecular Biology Reporter, 2021, 39, 146-162.	1.8	4
18	Genome-wide in silico analysis of SOD genes in common bean (Phaseolus vulgaris L.). Journal of Crop Science and Biotechnology, 2020, 23, 241-251.	1.5	3

TIAGO BENEDITO DOS SANTOS

#	Article	IF	CITATIONS
19	The urea transporter DUR3 is differentially regulated by abiotic and biotic stresses in coffee plants. Physiology and Molecular Biology of Plants, 2021, 27, 203-212.	3.1	3
20	Validation of reference genes for real-time quantitative PCR in Brachiaria grass under salt stress. Plant Gene, 2021, 27, 100319.	2.3	3
21	A GENOME-WIDE ANALYSIS OF THE GALACTINOL SYNTHASEGENE FAMILY IN BANANA (Musa acuminata). Colloquium Agrariae, 2018, 14, 01-11.	0.2	3
22	Coffea arabica L. genes from isoprenoid metabolic pathways are more expressed in full sun cultivation systems than in agroforestry systems. Plant Gene, 2021, 26, 100287.	2.3	2
23	Small heat shock protein (Hsp20) gene family in Phaseolus vulgaris L.: Genome-wide identification, evolutionary and expression analysis. Plant Gene, 2022, 31, 100370.	2.3	2
24	Urochloa brizantha cv. Marandu presents a better response to in vitro salt stress than other commercial cultivars. Colloquium Agrariae, 2021, 17, 74-82.	0.2	1
25	IN SILICO ANALYSIS OF THE Dof TRANSCRIPTION FACTOR FAMILY IN Coffea canephora. Colloquium Agrariae, 2018, 14, 99-111.	0.2	1
26	An in silicodata miningof theammonium transporter gene familyin Ananas comosusL Colloquium Agrariae, 2021, 16, 10-24.	0.2	1
27	Identification, evolutionary and expression analysis of the galactinol synthase (GolS) genes in Panicum virgatum L. and Panicum hallii : An in silico approach. Plant Gene, 2020, 24, 100262.	2.3	Ο
28	Molybdenum (Mo) transporter genes in Panicoideae species: a genome-wide evolution study. Journal of Crop Science and Biotechnology, 0, , 1.	1.5	0