
Daniel R Lammel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342401/publications.pdf Version: 2024-02-01

DANIEL PLAMMEL

#	Article	IF	CITATIONS
1	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	12.6	248
2	Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist, 2019, 222, 1171-1175.	7.3	164
3	Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures. Microbiome, 2018, 6, 106.	11.1	123
4	Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian Soils. Frontiers in Microbiology, 2015, 6, 1057.	3.5	102
5	Land use, soil and litter chemistry drive bacterial community structures in samples of the rainforest and Cerrado (Brazilian Savannah) biomes in Southern Amazonia. European Journal of Soil Biology, 2015, 66, 32-39.	3.2	63
6	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	5.3	29
7	Diversity and symbiotic effectiveness of beta-rhizobia isolated from sub-tropical legumes of a Brazilian Araucaria Forest. World Journal of Microbiology and Biotechnology, 2013, 29, 2335-2342.	3.6	21
8	Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil. Brazilian Journal of Biology, 2015, 75, 894-905.	0.9	19
9	Woody Mimosa species are nodulated by Burkholderia in ombrophylous forest soils and their symbioses are enhanced by arbuscular mycorrhizal fungi (AMF). Plant and Soil, 2015, 393, 123-135.	3.7	18
10	Testing Contrast Agents to Improve Micro Computerized Tomography (μCT) for Spatial Location of Organic Matter and Biological Material in Soil. Frontiers in Environmental Science, 2019, 7, .	3.3	13
11	Rhizobia and other legume nodule bacteria richness in brazilian Araucaria angustifolia forest. Scientia Agricola, 2007, 64, 400-408.	1.2	11
12	Cecal Microbiota in Broilers Fed with Prebiotics. Frontiers in Genetics, 2017, 8, 153.	2.3	10
13	Soil biota shift with land use change from pristine rainforest and Savannah (Cerrado) to agriculture in southern Amazonia. Molecular Ecology, 2021, 30, 4899-4912.	3.9	10
14	C and N stocks are not impacted by land use change from Brazilian Savanna (Cerrado) to agriculture despite changes in soil fertility and microbial abundances. Journal of Plant Nutrition and Soil Science, 2017, 180, 436-445.	1.9	8