Dariusz M Niedzwiedzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342251/publications.pdf Version: 2024-02-01

		117571	128225
128	4,564	34	60
papers	citations	h-index	g-index
131	131	131	4874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Size and Structure Matter: Enhanced CO ₂ Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO ₂ Single Crystals. Journal of the American Chemical Society, 2012, 134, 11276-11281.	6.6	691
2	Phycobilisomes Supply Excitations to Both Photosystems in a Megacomplex in Cyanobacteria. Science, 2013, 342, 1104-1107.	6.0	299
3	Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures. Journal of Physical Chemistry B, 2007, 111, 5984-5998.	1.2	141
4	Femtosecond Time-Resolved Transient Absorption Spectroscopy of Xanthophylls. Journal of Physical Chemistry B, 2006, 110, 22872-22885.	1.2	133
5	Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynthesis Research, 2010, 106, 227-238.	1.6	112
6	Surface Engineered CuO Nanowires with ZnO Islands for CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2015, 7, 5685-5692.	4.0	100
7	Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. Journal of Physical Chemistry B, 2008, 112, 10689-10703.	1.2	94
8	Molecular Mechanism of Photoactivation and Structural Location of the Cyanobacterial Orange Carotenoid Protein. Biochemistry, 2014, 53, 13-19.	1.2	92
9	Biohybrid Photosynthetic Antenna Complexes for Enhanced Light-Harvesting. Journal of the American Chemical Society, 2012, 134, 4589-4599.	6.6	87
10	Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 189-201.	0.5	84
11	Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four <i>meso</i> -Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. Journal of Physical Chemistry A, 2016, 120, 9719-9731.	1.1	75
12	Identification of a single peridinin sensing Chl- <i>a</i> excitation in reconstituted PCP by crystallography and spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20764-20769.	3.3	69
13	Spectroscopic Investigation of Peridinin Analogues Having Different π-Electron Conjugated Chain Lengths: Exploring the Nature of the Intramolecular Charge Transfer State. Journal of Physical Chemistry B, 2009, 113, 13604-13612.	1.2	61
14	Fast Photochemical Oxidation of Proteins Maps the Topology of Intrinsic Membrane Proteins: Light-Harvesting Complex 2 in a Nanodisc. Analytical Chemistry, 2016, 88, 8827-8834.	3.2	56
15	Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization. Journal of Physical Chemistry B, 2015, 119, 4382-4395.	1.2	55
16	Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids. Chemical Physics, 2009, 357, 4-16.	0.9	54
17	Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase–HliC/D complex. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1430-1439. 	0.5	54
18	Ultrafast Time-Resolved Spectroscopy of Xanthophylls at Low Temperature. Journal of Physical Chemistry B, 2008, 112, 3558-3567.	1.2	52

2

#	Article	IF	CITATIONS
19	Electrosprayâ€Assisted Fabrication of Moistureâ€Resistant and Highly Stable Perovskite Solar Cells at Ambient Conditions. Advanced Energy Materials, 2017, 7, 1700210.	10.2	51
20	Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1576-1587.	0.5	50
21	Stepwise Conversion of Two Pyrrole Moieties of Octaethylporphyrin to Pyridinâ€3â€ones: Synthesis, Mass Spectral, and Photophysical Properties of Mono and Bis(oxypyri)porphyrins. Chemistry - A European Journal, 2009, 15, 5749-5762.	1.7	47
22	Ultrafast time-resolved absorption spectroscopy of geometric isomers of xanthophylls. Chemical Physics, 2010, 373, 80-89.	0.9	47
23	Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures. Chemical Science, 2013, 4, 2036.	3.7	47
24	Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148064.	0.5	46
25	Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4486-93.	3.3	45
26	Spectroscopic properties of the Chlorophyll a–Chlorophyll c 2–Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. Photosynthesis Research, 2014, 120, 125-139.	1.6	44
27	Triplet Excited State Energies and Phosphorescence Spectra of (Bacterio)Chlorophylls. Journal of Physical Chemistry B, 2014, 118, 7221-7232.	1.2	41
28	Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing. Journal of Materials Chemistry A, 2019, 7, 12790-12799.	5.2	41
29	Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre. Nature Communications, 2017, 8, 13972.	5.8	40
30	Structures of <i>Rhodopseudomonas palustris</i> RC-LH1 complexes with open or closed quinone channels. Science Advances, 2021, 7, .	4.7	38
31	Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery. Chemical Science, 2013, 4, 3924.	3.7	37
32	Generation of Phosphorescent Triplet States via Photoinduced Electron Transfer: Energy and Electron Transfer Dynamics in Pt Porphyrin–Rhodamine B Dyads. Journal of Physical Chemistry A, 2012, 116, 3598-3610.	1.1	36
33	Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin. Journal of Physical Chemistry B, 2013, 117, 9288-9304.	1.2	36
34	Activatable Probes Based on Distanceâ€Dependent Luminescence Associated with Cerenkov Radiation. Angewandte Chemie - International Edition, 2013, 52, 7756-7760.	7.2	36
35	Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 209-223.	0.5	36
36	Effect of π-electron conjugation length on the solvent-dependent S1 lifetime of peridinin. Chemical Physics Letters, 2008, 463, 219-224.	1.2	35

#	Article	IF	CITATIONS
37	Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles. Journal of Physical Chemistry B, 2015, 119, 10231-10243.	1.2	35
38	Low-Temperature Spectroscopic Properties of the Peridinin–Chlorophyll <i>a</i> –Protein (PCP) Complex from the Coral Symbiotic Dinoflagellate <i>Symbiodinium</i> . Journal of Physical Chemistry B, 2013, 117, 11091-11099.	1.2	34
39	Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays—Interplay of Orbital Mixing and Configuration Interaction. Journal of the American Chemical Society, 2017, 139, 17547-17564.	6.6	34
40	Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynthesis Research, 2018, 135, 177-189.	1.6	34
41	A novel chlorophyll protein complex in the repair cycle of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21907-21913.	3.3	34
42	Excited States Energies and Dynamics of Peridinin Analogues and the Nature of the Intramolecular Charge Transfer State in Carbonyl-Containing Carotenoids. Journal of Physical Chemistry B, 2013, 117, 6874-6887.	1.2	33
43	Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chemical Science, 2013, 4, 3459.	3.7	32
44	Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture. Photosynthesis Research, 2014, 121, 35-48.	1.6	32
45	Cation radicals of xanthophylls. Photosynthesis Research, 2007, 94, 67-78.	1.6	31
46	Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1849-1860.	0.5	31
47	Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium <i>Chlorobaculum tepidum</i> . Journal of Physical Chemistry B, 2015, 119, 8321-8329.	1.2	31
48	Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 493-501.	0.5	30
49	Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads. Journal of Physical Chemistry A, 2016, 120, 379-395.	1.1	28
50	Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 <i>meso</i> -Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP). Journal of Physical Chemistry A, 2020, 124, 7776-7794.	1.1	28
51	Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum. Photosynthesis Research, 2011, 107, 177-186.	1.6	27
52	Excited state properties of chlorophyll f in organic solvents at ambient and cryogenic temperatures. Photosynthesis Research, 2014, 121, 25-34.	1.6	26
53	Excited State Properties of 3′-Hydroxyechinenone in Solvents and in the Orange Carotenoid Protein from <i>Synechocystis</i> sp. PCC 6803. Journal of Physical Chemistry B, 2014, 118, 6141-6149.	1.2	26
54	Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 249-258.	0.5	26

5

#	Article	IF	CITATIONS
55	Temperature-induced isomerization of violaxanthin in organic solvents and in light-harvesting complex II. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 109-114.	1.7	25
56	Synthetic bacteriochlorins bearing polar motifs (carboxylate, phosphonate, ammonium and a short) Tj ETQq0 (2015, 39, 5694-5714.	0 rgBT /O 1.4	verlock 10 Tf 5 25
57	A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6502-6508.	3.3	25
58	Photophysical Properties of the Excited States of Bacteriochlorophyll <i>f</i> in Solvents and in Chlorosomes. Journal of Physical Chemistry B, 2014, 118, 2295-2305.	1.2	24
59	Photophysical Characterization of the Naturally Occurring Dioxobacteriochlorin Tolyporphin A and Synthetic Oxobacteriochlorin Analogues. Photochemistry and Photobiology, 2017, 93, 1204-1215.	1.3	24
60	Highly Stable Perovskite Solar Cells Fabricated Under Humid Ambient Conditions. IEEE Journal of Photovoltaics, 2017, 7, 532-538.	1.5	23
61	Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 544-553.	0.5	23
62	Role of B800 in Carotenoidâ^'Bacteriochlorophyll Energy and Electron Transfer in LH2 Complexes from the Purple BacteriumRhodobactersphaeroides. Journal of Physical Chemistry B, 2007, 111, 7422-7431.	1.2	22
63	Effect of structural modifications on the spectroscopic properties and dynamics of the excited states of peridinin. Archives of Biochemistry and Biophysics, 2009, 483, 146-155.	1.4	22
64	Singlet and Triplet State Spectra and Dynamics of Structurally Modified Peridinins. Journal of Physical Chemistry B, 2011, 115, 4436-4445.	1.2	22
65	Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 518-528.	0.5	22
66	Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin. Journal of Physical Chemistry B, 2014, 118, 1630-1647.	1.2	22
67	Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from <i>Rhodobacter sphaeroides</i> with an Engineered Carotenoid Synthesis Pathway. Journal of Physical Chemistry B, 2016, 120, 5429-5443.	1.2	22
68	Syntheses of C33-, C35-, and C39-Peridinin and Their Spectral Characteristics. Organic Letters, 2009, 11, 5006-5009.	2.4	21
69	Metalloproteins Diversified: The Auracyanins Are a Family of Cupredoxins That Stretch the Spectral and Redox Limits of Blue Copper Proteins. Biochemistry, 2013, 52, 8267-8275.	1.2	21
70	Photophysical Properties and Electronic Structure of Bacteriochlorin–Chalcones with Extended Nearâ€Infrared Absorption. Photochemistry and Photobiology, 2013, 89, 586-604.	1.3	21
71	New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. Photosynthesis Research, 2017, 131, 291-304.	1.6	21
72	Voltammetric redox potentials of carotenoids associated with the xanthophyll cycle in photosynthesis. Chemical Physics Letters, 2005, 415, 308-312.	1.2	20

#	Article	IF	CITATIONS
73	Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 640-655.	0.5	20
74	Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S ₀ → S ₁ Transition. Journal of Physical Chemistry B, 2016, 120, 2731-2744.	1.2	20
75	Origin of Panchromaticity in Multichromophore–Tetrapyrrole Arrays. Journal of Physical Chemistry A, 2018, 122, 7181-7201.	1.1	20
76	X-ray Crystal Structure and Time-Resolved Spectroscopy of the Blue Carotenoid Violerythrin. Journal of Physical Chemistry B, 2010, 114, 8760-8769.	1.2	19
77	Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. Photosynthesis Research, 2011, 110, 49-60.	1.6	18
78	Intensity Dependence of the Excited State Lifetimes and Triplet Conversion Yield in the Fenna–Matthews–Olson Antenna Protein. Journal of Physical Chemistry B, 2014, 118, 2058-2069.	1.2	18
79	Exciton Binding Energy of MAPbI ₃ Thin Film Elucidated via Analysis and Modeling of Perovskite Absorption and Photoluminescence Properties Using Various Methodologies. Journal of Physical Chemistry C, 2022, 126, 1046-1054.	1.5	18
80	Polymer–Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. Langmuir, 2017, 33, 6427-6438.	1.6	17
81	Triplet state spectra and dynamics of peridinin analogs having different extents of ï€-electron conjugation. Photosynthesis Research, 2010, 103, 167-174.	1.6	16
82	Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from <i>Roseiflexus castenholzii</i> 1 Resubmitted to J Phys Chem B Journal of Physical Chemistry B, 2010, 114, 8723-8734.	1.2	16
83	Annulated bacteriochlorins for near-infrared photophysical studies. New Journal of Chemistry, 2019, 43, 7209-7232.	1.4	16
84	Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. Journal of Physical Chemistry B, 2016, 120, 11123-11131.	1.2	15
85	Interaction between chlorophyll a and violaxanthin in different steric conformations. Colloids and Surfaces B: Biointerfaces, 2003, 28, 27-38.	2.5	14
86	Excited state properties of a short π-electron conjugated peridinin analogue. Chemical Physics Letters, 2014, 593, 132-139.	1.2	14
87	Adaptation of <i>Rhodopseudomonas acidophila</i> strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2?. Faraday Discussions, 2018, 207, 471-489.	1.6	14
88	Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 286-296.	0.5	14
89	Stabilization of fluorophore in DNA thin films. Applied Physics Letters, 2009, 95, .	1.5	13
90	Syntheses of ylidenbutenolide-modified derivatives of peridinin and their stereochemical and spectral characteristics. Organic and Biomolecular Chemistry, 2010, 8, 2513.	1.5	13

DARIUSZ M NIEDZWIEDZKI

#	Article	IF	CITATIONS
91	Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria. Journal of Physical Chemistry B, 2017, 121, 7571-7585.	1.2	13
92	Excitation energy transfer kinetics and efficiency in phototrophic green sulfur bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1180-1190.	0.5	13
93	Nonequilibrium Plasma Aerotaxy of InN Nanocrystals and Their Photonic Properties. Journal of Physical Chemistry C, 2019, 123, 30613-30622.	1.5	13
94	Photophysical properties of N719 and Z907 dyes, benchmark sensitizers for dye-sensitized solar cells, at room and low temperature. Physical Chemistry Chemical Physics, 2021, 23, 6182-6189.	1.3	13
95	Photophysical properties and electronic structure of retinylidene—chlorin—chalcones and analogues. Photochemical and Photobiological Sciences, 2014, 13, 634-650.	1.6	12
96	Enhanced Lightâ€Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1â€like Antennas. Photochemistry and Photobiology, 2014, 90, 1264-1276.	1.3	11
97	Amphiphilic, hydrophilic, or hydrophobic synthetic bacteriochlorins in biohybrid light-harvesting architectures: consideration of molecular designs. Photosynthesis Research, 2014, 122, 187-202.	1.6	11
98	Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna–Matthews–Olson (FMO) Antenna Complex from <i>Chlorobaculum tepidum</i> . Journal of Physical Chemistry B, 2017, 121, 4700-4712.	1.2	11
99	Ultrafast energy transfer within pyropheophorbide-a tethered to self-assembling DNA quadruplex. Chemical Communications, 2010, 46, 544-546.	2.2	10
100	Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1–RC Core Complex of a Bacteriochlorophyll <i>b</i> Containing Purple Photosynthetic Bacterium <i>Blastochloris viridis</i> . Journal of Physical Chemistry B, 2016, 120, 5159-5171.	1.2	10
101	Excitation Energy Transfer in Intact CpcL-Phycobilisomes from <i>Synechocystis</i> sp. PCC 6803. Journal of Physical Chemistry B, 2019, 123, 4695-4704.	1.2	10
102	Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynthesis Research, 2019, 140, 337-354.	1.6	9
103	Structures and functions of carotenoids bound to reaction centers from purple photosynthetic bacteria. Pure and Applied Chemistry, 2006, 78, 1505-1518.	0.9	8
104	Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities. Photosynthesis Research, 2018, 137, 389-402.	1.6	8
105	A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. MBio, 2021, 12, .	1.8	8
106	Towards elucidating the energy of the first excited singlet state of xanthophyll cycle pigments by X-ray absorption spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 102-107.	0.5	7
107	New molecular design for blue BODIPYs. New Journal of Chemistry, 2019, 43, 7233-7242.	1.4	7
108	Performance enhancement of low temperature processed tin oxide as an electron transport layer for perovskite solar cells under ambient conditions. International Journal of Energy Research, 2020, 44, 11361-11371.	2.2	7

DARIUSZ M NIEDZWIEDZKI

#	Article	IF	CITATIONS
109	Electronic Structure and Excited-State Dynamics of Rylene–Tetrapyrrole Panchromatic Absorbers. Journal of Physical Chemistry A, 2021, 125, 7900-7919.	1.1	7
110	Excited-state properties of the central-cis isomer of the carotenoid peridinin. Archives of Biochemistry and Biophysics, 2018, 649, 29-36.	1.4	6
111	Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. Photosynthesis Research, 2020, 144, 155-169.	1.6	6
112	Ability of the Putative Decomposition Products of 2,3â€dioxetanes of Indoles to Photosensitize Cyclobutane Pyrimidine Dimer (CPD) Formation and its Implications for the "Dark―(Chemisensitized) Pathway to CPDs in Melanocytes ^{â€} . Photochemistry and Photobiology, 2022, 98, 442-454.	1.3	6
113	Spectroscopic investigations of electron and hole dynamics in MAPbBr ₃ perovskite film and carrier extraction to PEDOT hole transport layer. Physical Chemistry Chemical Physics, 2021, 23, 13011-13022.	1.3	6
114	Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum. Photosynthesis Research, 2016, 127, 171-187.	1.6	5
115	Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148155.	0.5	5
116	Computational determination of the pigment binding motif in the chlorosome protein a of green sulfur bacteria. Photosynthesis Research, 2013, 118, 231-247.	1.6	4
117	Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Physical Chemistry Chemical Physics, 2015, 17, 13245-13256.	1.3	4
118	Conjugated-linker dependence of the photophysical properties and electronic structure of chlorin dyads. Journal of Porphyrins and Phthalocyanines, 2021, 25, 639-663.	0.4	4
119	Amorphous Cu2-δO as Passivation Layer for Ultra Long Stability of Copper Oxide Nanowires in Photoelectrochemical Environments. Journal of the Electrochemical Society, 2018, 165, H417-H424. Excited-State Properties of Metal-Free	1.3	3
120	((<i>Z</i>)-2-Cyano-3-(4-((<i>E</i>)-2-(6-(4-methoxyphenyl)-9-octyl-9 <i>H</i> -carbazol-3-yl)vinyl)phenyl)acrylic) (N719 and Z907) Dyes and Photoinduced Charge Transfer Processes in ETO/TiCl ₄ /TiCl ₂ /Dye Photoanodes Fabricated by Conventional Staining and	Tj ETQq0 (1.1	0 0 rgBT /Ove 3
121	Potential-Assisted Adsorption. Journal of Physical Chemistry A, 2020, 124, 4333-4344. Introduction of cysteine-mediated quenching in the CP43 protein of photosystem II builds resilience to high-light stress in a cyanobacterium. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148580.	0.5	3
122	Photophysical properties of a synthetic, carbonyl-containing (N=6+CO) carotenoid analogue. Chemical Physics Letters, 2014, 601, 74-80.	1.2	2
123	Expanding Covalent Attachment Sites of Nonnative Chromophores to Encompass the Câ€Terminal Hydrophilic Domain in Biohybrid Lightâ€Harvesting Architectures. ChemPhotoChem, 2018, 2, 300-313.	1.5	2
124	Repurposing a photosynthetic antenna protein as a super-resolution microscopy label. Scientific Reports, 2017, 7, 16807.	1.6	1
125	Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids. Chemical Physics, 2009, 357, 4.	0.9	1
126	Excited-state properties of newly sensitized imidazole-arylamine-based organic DSSC sensitizers in solvent and adsorbed on TiO2/FTO support. Dyes and Pigments, 2022, 202, 110273.	2.0	1

#	Article	IF	CITATIONS
127	Role of Pt Nanoparticles in Photoreactions on TiO2 Photoelectrodes. Materials Research Society Symposia Proceedings, 2012, 1446, 85.	0.1	0
128	Enhanced Carbon Dioxide Photoconversion Efficiency by 1D Structured Platinized TiO2 Films. ECS Transactions, 2013, 58, 305-309.	0.3	0