Panagiotis Polygerinos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342223/publications.pdf

Version: 2024-02-01

60 papers

6,297 citations

361413 20 h-index 501196 28 g-index

62 all docs

62 docs citations

times ranked

62

4602 citing authors

#	Article	IF	CITATIONS
1	An Underwater Glider with Muscle—Actuated Buoyancy Control and Caudal Fin Turning. Machines, 2022, 10, 381.	2.2	3
2	Towards Untethered Soft Pneumatic Exosuits Using Low-Volume Inflatable Actuator Composites and a Portable Pneumatic Source. IEEE Robotics and Automation Letters, 2020, 5, 4062-4069.	5.1	17
3	Evaluating Immediate Benefits of Assisting Knee Extension With a Soft Inflatable Exosuit. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 216-225.	3.2	21
4	Design of a Soft Ankle-Foot Orthosis Exosuit for Foot Drop Assistance. , 2019, , .		27
5	Design, Development, and Control of a Fabric-Based Soft Ankle Module to Mimic Human Ankle Stiffness. , 2019, 2019, 886-891.		2
6	Fabric Soft Poly-Limbs for Physical Assistance of Daily Living Tasks. , 2019, , .		30
7	Fabric-Based Soft Grippers Capable of Selective Distributed Bending for Assistance of Daily Living Tasks. , 2019, , .		8
8	Design, Characterization, and Mechanical Programming of Fabric-Reinforced Textile Actuators for a Soft Robotic Hand., 2019,,.		10
9	Dynamic Modeling and Motion Control of a Soft Robotic Arm Segment. , 2019, , .		10
10	Soft Poly-Limbs: Toward a New Paradigm of Mobile Manipulation for Daily Living Tasks. Soft Robotics, 2019, 6, 38-53.	8.0	59
11	Soft Wearable Deltoid Assistive Device. , 2019, , .		1
12	Design of a Soft Ankle Joint Device for Correction of Inversion/Eversion Angle During Aquatic Therapy. , 2019, , .		1
13	Haptic Neurofeedback Device for Parkinson's Patients. , 2019, , .		O
14	Design and Control of a Hexacopter With Soft Grasper for Autonomous Object Detection and Grasping. , 2018, , .		15
15	Weight Distribution Monitoring System for Patients With Parkinson's Disease. , 2018, , .		O
16	A Novel Soft Elbow Exosuit to Supplement Bicep Lifting Capacity. , 2018, , .		56
17	Soft Robotic Shoulder Assist Device: Towards Prevention of Shoulder Overuse Syndrome in Wheelchair Users. , 2018 , , .		2
18	Design and Development of a Soft Robotic Back Orthosis. , 2018, , .		10

#	Article	IF	CITATIONS
19	A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking. Frontiers in Robotics and AI, 2018, 5, 44.	3.2	58
20	Water pipe robot utilizing soft inflatable actuators. , 2018, , .		17
21	Distributed Planning of Multi-Segment Soft Robotic Arms. , 2018, , .		10
22	SOFT ROBOTIC GLOVE FOR COMBINED ASSISTANCE AND REHABILITATION DURING ACTIVITIES OF DAILY LIVING. , $2018, 135-157$.		1
23	Design and control of a 3-chambered fiber reinforced soft actuator with off-the-shelf stretch sensors. International Journal of Intelligent Robotics and Applications, 2017, 1, 342-351.	2.8	24
24	Soft Robotics: Review of Fluidâ€Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Humanâ€Robot Interaction. Advanced Engineering Materials, 2017, 19, 1700016.	3. 5	707
25	Interaction Forces of Soft Fiber Reinforced Bending Actuators. IEEE/ASME Transactions on Mechatronics, 2017, 22, 717-727.	5 . 8	130
26	Carpal Tunnel Syndrome Soft Relief Device for Typing Applications. , 2017, , .		10
27	Towards a Soft Robotic 3rd Arm for Activities of Daily Living. , 2017, , .		2
28	Development of a soft-inflatable exosuit for knee rehabilitation. , 2017, , .		43
29	Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function. Frontiers in Robotics and Al, 2017, 4, .	3.2	16
30	Towards the design of a soft robotic third arm for assisted living tasks. , 2017, , .		1
31	Soft-inflatable exosuit for knee rehabilitation. , 2017, , .		O
32	Development of a Dynamically Adjusting Soft Wheelchair Insert for Reduction of Single-Point Pressure. , $2017, \ldots$		0
33	Hysteresis Compensation for Ground Contact Force Measurement With Shoe-Embedded Air Pressure Sensors. , 2016, , .		9
34	Smart and Connected Actuated Mobile and Sensing Suit to Encourage Motion in Developmentally Delayed Infants 1. Journal of Medical Devices, Transactions of the ASME, 2015, 9, .	0.7	16
35	Modeling of Soft Fiber-Reinforced Bending Actuators. IEEE Transactions on Robotics, 2015, 31, 778-789.	10.3	688
36	Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper. Journal of Mechanisms and Robotics, 2015, 7, .	2.2	37

#	Article	IF	Citations
37	Mechanical Programming of Soft Actuators by Varying Fiber Angle. Soft Robotics, 2015, 2, 26-32.	8.0	382
38	A light-reflecting balloon catheter for atraumatic tissue defect repair. Science Translational Medicine, 2015, 7, 306ra149.	12.4	34
39	Soft robotic glove for hand rehabilitation and task specific training. , 2015, , .		161
40	EMG controlled soft robotic glove for assistance during activities of daily living. , 2015, , .		111
41	Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 2015, 73, 135-143.	5.1	1,168
42	Cervical Spine Immobilization Device for Emergency Response 1. Journal of Medical Devices, Transactions of the ASME, 2014, 8 , .	0.7	2
43	An intraventricular soft robotic pulsatile assist device for right ventricular heart failure. , 2014, , .		1
44	Biologically Inspired Soft Robot for Thumb Rehabilitation 1. Journal of Medical Devices, Transactions of the ASME, 2014, 8 , .	0.7	75
45	Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mechanics Letters, 2014, 1, 42-46.	4.1	38
46	Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials, 2014, 24, 2163-2170.	14.9	1,125
47	The Soft Robotics Toolkit: Shared Resources for Research and Design. Soft Robotics, 2014, 1, 224-230.	8.0	109
48	Shape Deposition Manufacturing of a Soft, Atraumatic, Deployable Surgical Grasper 1. Journal of Medical Devices, Transactions of the ASME, 2014, 8 , .	0.7	31
49	An Intraventricular Soft Robotic Pulsatile Assist Device for Right Ventricular Heart Failure1. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.7	8
50	Triaxial Catheter-Tip Force Sensor for MRI-Guided Cardiac Procedures. IEEE/ASME Transactions on Mechatronics, 2013, 18, 386-396.	5.8	95
51	Mechanically programmable bend radius for fiber-reinforced soft actuators. , 2013, , .		183
52	Towards a soft pneumatic glove for hand rehabilitation. , 2013, , .		336
53	MRI-Compatible Intensity-Modulated Force Sensor for Cardiac Catheterization Procedures. IEEE Transactions on Biomedical Engineering, 2011, 58, 721-726.	4.2	73
54	Modeling of Light Intensity-Modulated Fiber-Optic Displacement Sensors. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 1408-1415.	4.7	46

#	Article	lF	CITATIONS
55	Novel miniature MRI-compatible fiber-optic force sensor for cardiac catheterization procedures. , 2010, , .		56
56	Tactile sensor array using prismatic-tip optical fibers for dexterous robotic hands. , 2010, , .		10
57	MRI-Compatible Fiber-Optic Force Sensors for Catheterization Procedures. IEEE Sensors Journal, 2010, 10, 1598-1608.	4.7	115
58	Measuring tip and side forces of a novel catheter prototype: A feasibility study. , 2009, , .		12
59	A fibre-optic catheter-tip force sensor with MRI compatibility: A feasibility study., 2009, 2009, 1501-054.		22
60	A novel MRI compatible air-cushion tactile sensor for Minimally Invasive Surgery. , 2009, , .		11