Bernard J Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tospoviruses Induce Small Interfering RNAs Targeting Viral Sequences and Endogenous Transcripts in Solanaceous Plants. Pathogens, 2022, 11, 745.	1.2	4
2	Contrasting epigenetic control of transgenes and endogenous genes promotes post-transcriptional transgene silencing in Arabidopsis. Nature Communications, 2021, 12, 2787.	5.8	5
3	DEFECTIVE EMBRYO AND MERISTEMS genes are required for cell division and gamete viability in Arabidopsis. PLoS Genetics, 2021, 17, e1009561.	1.5	3
4	Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. Plant Physiology, 2021, 187, 886-899.	2.3	32
5	Can-Seq: a PCR and DNA sequencing strategy for identifying new alleles of known and candidate genes. Plant Methods, 2020, 16, 16.	1.9	5
6	Post-transcriptional gene silencing triggers dispensable DNA methylation in gene body in Arabidopsis. Nucleic Acids Research, 2019, 47, 9104-9114.	6.5	15
7	SCRAM: a pipeline for fast index-free small RNA read alignment and visualization. Bioinformatics, 2018, 34, 2670-2672.	1.8	11
8	Evolution and Diversification of Small RNA Pathways in Flowering Plants. Plant and Cell Physiology, 2018, 59, 2169-2187.	1.5	26
9	RNA-Dependent Epigenetic Silencing Directs Transcriptional Downregulation Caused by Intronic Repeat Expansions. Cell, 2018, 174, 1095-1105.e11.	13.5	16
10	Nitrate Inhibition of Nodulation in Legumes. , 2018, , 159-180.		33
11	Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017, 3, 16207.	4.7	641
12	A Genetic Screen for Impaired Systemic RNAi Highlights the Crucial Role of DICER-LIKE 2. Plant Physiology, 2017, 175, 1424-1437.	2.3	72
13	Induction of virus resistance by exogenous application of double-stranded RNA. Current Opinion in Virology, 2017, 26, 49-55.	2.6	112
14	Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions. Frontiers in Neuroscience, 2016, 10, 92.	1.4	4
15	The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca. Frontiers in Plant Science, 2016, 7, 1349.	1.7	31
16	Generation of an integrated Hieracium genomic and transcriptomic resource enables exploration of small RNA pathways during apomixis initiation. BMC Biology, 2016, 14, 86.	1.7	19
17	Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology, 2016, 490, 27-40.	1.1	28
18	3′ and 5′ microRNA-end post-biogenesis modifications in plant transcriptomes: Evidences from small RNA next generation sequencing data analysis. Biochemical and Biophysical Research Communications, 2015, 467, 892-899.	1.0	5

BERNARD J CARROLL

#	Article	IF	CITATIONS
19	MicroRNAs as regulators of adventitious root development. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 339-347.	0.9	21
20	The 2HA line of Medicago truncatulahas characteristics of an epigenetic mutant that is weakly ethylene insensitive. BMC Plant Biology, 2014, 14, 174.	1.6	12
21	Mechanism of Small RNA Movement. , 2012, , 99-130.		3
22	Mobile MicroRNAs Hit the Target. Traffic, 2011, 12, 1475-1482.	1.3	13
23	RNA Decay and RNA Silencing in Plants: Competition or Collaboration?. Frontiers in Plant Science, 2011, 2, 99.	1.7	38
24	Intron splicing suppresses RNA silencing in Arabidopsis. Plant Journal, 2011, 68, 159-167.	2.8	93
25	Nodulation factor receptor kinase 1α controls nodule organ number in soybean (<i>Glycine max</i> L.) Tj ETQq1	1.0.78431 2.8	14 rgBT /Ove
26	SERRATEis required for intron suppression of RNA silencing in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 2035-2037.	1.2	14
27	MicroRNAs in the shoot apical meristem of soybean. Journal of Experimental Botany, 2011, 62, 2495-2506.	2.4	80
28	Inactivation of Duplicated Nod Factor Receptor 5 (NFR5) Genes in Recessive Loss-of-Function Non-Nodulation Mutants of Allotetraploid Soybean (Glycine max L. Merr.). Plant and Cell Physiology, 2010, 51, 201-214.	1.5	113
29	Stringent Programming of DNA Methylation in Humans. Twin Research and Human Genetics, 2010, 13, 405-411.	0.3	5
30	DNA Is Taken Up by Root Hairs and Pollen, and Stimulates Root and Pollen Tube Growth Â. Plant Physiology, 2010, 153, 799-805.	2.3	60
31	Endocytosis-like protein uptake in the bacterium <i>Gemmata obscuriglobus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12883-12888.	3.3	210
32	Importin-β Is a GDP-to-GTP Exchange Factor of Ran. Journal of Biological Chemistry, 2009, 284, 22549-22558.	1.6	27
33	Kap95p Binding Induces the Switch Loops of RanGDP to Adopt the GTP-Bound Conformation: Implications for Nuclear Import Complex Assembly Dynamics. Journal of Molecular Biology, 2008, 383, 772-782.	2.0	32
34	Plants can use protein as a nitrogen source without assistance from other organisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4524-4529.	3.3	296
35	RNA interferenceâ€inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Reports, 2006, 7, 1168-1175.	2.0	284
36	Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4068-4073.	3.3	261

BERNARD J CARROLL

#	Article	IF	CITATIONS
37	Functional Genomics of the Regulation of Nodule Number in Legumes. Current Plant Science and Biotechnology in Agriculture, 2005, , 173-178.	0.0	1
38	Genetic diversity revealed in the apomictic fruit species Garcinia mangostana L. (mangosteen). Euphytica, 2004, 136, 1-10.	0.6	52
39	<i>Ac</i> Transposase Induces Methylation of a <i>Ds</i> Transposon in Transgenic Tomato. Journal of Genome Science and Technology, 2004, 3, 29-31.	0.0	Ο
40	Cloning and characterization of two genes encoding sulfate transporters from rice (Oryza sativa L.)*. Plant and Soil, 2003, 257, 113-123.	1.8	18
41	Long-Distance Signaling in Nodulation Directed by a CLAVATA1-Like Receptor Kinase. Science, 2003, 299, 109-112.	6.0	496
42	Randomly Amplified DNA Fingerprinting: A Culmination of DNA Marker Technologies Based on Arbitrarily-Primed PCR Amplification. Journal of Biomedicine and Biotechnology, 2002, 2, 141-150.	3.0	34
43	Fast Neutron Mutagenesis of Soybean (<i>Glycine soja</i> L.) Produces a Supernodulating Mutant Containing a Large Deletion in Linkage Group H. Journal of Genome Science and Technology, 2002, 1, 147-155.	0.7	50
44	Binuclear Metal Centers in Plant Purple Acid Phosphatases: Fe–Mn in Sweet Potato and Fe–Zn in Soybean. Archives of Biochemistry and Biophysics, 1999, 370, 183-189.	1.4	161
45	Transposon Tagging of the Defective embryo and meristems Gene of Tomato. Plant Cell, 1998, 10, 877-887.	3.1	34
46	Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Molecular Genetics and Genomics, 1994, 242, 573-585.	2.4	82
47	Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant Journal, 1993, 3, 493-494.	2.8	274
48	Use of the maize transposonsActivator andDissociation to show that phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. Transgenic Research, 1993, 2, 63-78.	1.3	19
49	Rhizosphere colonization by Bradyrhizobium japonicum is related to extent of nodulation of Clycine max CV. Bragg and its supernodulating mutants. Soil Biology and Biochemistry, 1993, 25, 613-619.	4.2	3
50	Studies on the root control of non-nodulation and plant growth of non-nodulating mutants and a supernodulating mutant of soybean (Glycine max (L.) Merr.). Plant Science, 1992, 83, 35-43.	1.7	12
51	Nitrogen Partitioning During Early Development of Supernodulating Soybean (Glycine max[L.] Merrill) Mutants and their Wild-Type Parent. Journal of Experimental Botany, 1990, 41, 1239-1244.	2.4	13
52	Symbiotic Performance of Supernoclulating Soybean (Glycine max(L.) Merrill) Mutants during Development on Different Nitrogen Regimes. Journal of Experimental Botany, 1989, 40, 715-724.	2.4	56
53	Relationship between autoregulation and nitrate inhibition of nodulation in soybeans. Physiologia Plantarum, 1989, 75, 37-42.	2.6	64
54	Alleviation of nitrate inhibition of soybean nodulation by high inoculum does not involve bacterial nitrate metabolism. Plant and Soil, 1988, 110, 123-127.	1.8	9

BERNARD J CARROLL

#	Article	IF	CITATIONS
55	Genetic analysis and complementation studies on a number of mutant supernodulating soybean lines. Journal of Genetics, 1988, 67, 1-8.	0.4	33
56	Suppression of the Symbiotic Supernodulation Symptoms of Soybean. Journal of Plant Physiology, 1988, 132, 417-423.	1.6	28
57	Characterization of Non-Nodulation Mutants of Soybean [Glycine max (L.) Merr]: Bradyrhizobium Effects and Absence of Root Hair Curling. Journal of Plant Physiology, 1987, 131, 349-361.	1.6	42
58	Plant Host Genetics of Nodulation Initiation in Soybean. Current Plant Science and Biotechnology in Agriculture, 1987, , 85-90.	0.0	3
59	Mutagenesis of soybean (Clycine max (L.) Merr.) and the isolation of non-nodulating mutants. Plant Science, 1986, 47, 109-114.	1.7	79
60	Growth comparisons of a supernodulating soybean (Glycine max) mutant and its wild-type parent. Physiologia Plantarum, 1986, 68, 375-382.	2.6	99
61	Regulation of the Soybean- <i>Rhizobium</i> Nodule Symbiosis by Shoot and Root Factors. Plant Physiology, 1986, 82, 588-590.	2.3	314
62	Isolation and Initial Characterization of Constitutive Nitrate Reductase-Deficient Mutants NR328 and NR345 of Soybean (Glycine max). Plant Physiology, 1986, 81, 572-576.	2.3	26
63	A Supernodulation and Nitrate-Tolerant Symbiotic (<i>nts</i>) Soybean Mutant. Plant Physiology, 1985, 78, 34-40.	2.3	372
64	Nitrate Inhibition of Nodulation and Nitrogen Fixation in White Clover. Zeitschrift Für Pflanzenphysiologie, 1983, 110, 77-88.	1.4	82
65	RNA Interference. , 0, , 207-225.		0