Catherine Emily Carr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/334217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of dendrites in auditory coincidence detection. Nature, 1998, 393, 268-272.	27.8	348
2	Sound localization: Jeffress and beyond. Current Opinion in Neurobiology, 2011, 21, 745-751.	4.2	131
3	On hearing with more than one ear: lessons from evolution. Nature Neuroscience, 2009, 12, 692-697.	14.8	109
4	Maps of interaural time difference in the chicken's brainstem nucleus laminaris. Biological Cybernetics, 2008, 98, 541-559.	1.3	103
5	Evolution of a sensory novelty: Tympanic ears and the associated neural processing. Brain Research Bulletin, 2008, 75, 365-370.	3.0	83
6	Specialization for underwater hearing by the tympanic middle ear of the turtle, <i>Trachemys scripta elegans</i> . Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2816-2824.	2.6	62
7	Detection of Interaural Time Differences in the Alligator. Journal of Neuroscience, 2009, 29, 7978-7990.	3.6	56
8	Binaural processing by the gecko auditory periphery. Journal of Neurophysiology, 2011, 105, 1992-2004.	1.8	51
9	The Evolution of Central Pathways and Their Neural Processing Patterns. Springer Handbook of Auditory Research, 2004, , 289-359.	0.7	50
10	Low-frequency pathway in the barn owl's auditory brainstem. Journal of Comparative Neurology, 1997, 378, 265-282.	1.6	47
11	Biophysics of directional hearing in the American alligator (<i>Alligator mississippiensis</i>). Journal of Experimental Biology, 2014, 217, 1094-1107.	1.7	45
12	Modeling coincidence detection in nucleus laminaris. Biological Cybernetics, 2003, 89, 388-396.	1.3	44
13	Microsecond Precision of Phase Delay in the Auditory System of the Barn Owl. Journal of Neurophysiology, 2005, 94, 1655-1658.	1.8	43
14	Development of calretinin immunoreactivity in the brainstem auditory nuclei of the barn owl (Tyto) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 50
15	Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius) Tj ETQq1 1 0.784314 rgBT	/Overlock	10 ₄₁ 50 182
16	Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds. Brain, Behavior and Evolution, 2004, 63, 169-180.	1.7	40
17	The cytoarchitecture of the nucleus angularis of the barn owl (Tyto alba). Journal of Comparative Neurology, 2001, 429, 192-205.	1.6	39
18	On the Origin of the Extracellular Field Potential in the Nucleus Laminaris of the Barn Owl (<i>Tyto) Tj ETQq0 0 C</i>) rgBT /Ov	erlock 10 Tf 5

CATHERINE EMILY CARR

#	Article	IF	CITATIONS
19	Middle Ear Cavity Morphology Is Consistent with an Aquatic Origin for Testudines. PLoS ONE, 2013, 8, e54086.	2.5	34
20	Beyond timing in the auditory brainstem: intensity coding in the avian cochlear nucleus angularis. Progress in Brain Research, 2007, 165, 123-133.	1.4	33
21	Localization of KCNC1 (Kv3.1) potassium channel subunits in the avian auditory nucleus magnocellularis and nucleus laminaris during development. Journal of Neurobiology, 2003, 55, 165-178.	3.6	30
22	Functional delay of myelination of auditory delay lines in the nucleus laminaris of the barn owl. Developmental Neurobiology, 2007, 67, 1957-1974.	3.0	29
23	Calciumâ€binding protein immunoreactivity characterizes the auditory system of <i>Gekko gecko</i> . Journal of Comparative Neurology, 2010, 518, 3409-3426.	1.6	29
24	Sound Localization Strategies in Three Predators. Brain, Behavior and Evolution, 2015, 86, 17-27.	1.7	27
25	Evolutionary trends in directional hearing. Current Opinion in Neurobiology, 2016, 40, 111-117.	4.2	27
26	Sound localization in the alligator. Hearing Research, 2015, 329, 11-20.	2.0	25
27	Auditory Responses in the Barn Owl's Nucleus Laminaris to Clicks: Impulse Response and Signal Analysis of Neurophonic Potential. Journal of Neurophysiology, 2009, 102, 1227-1240.	1.8	24
28	Animals and ICE: meaning, origin, and diversity. Biological Cybernetics, 2016, 110, 237-246.	1.3	24
29	Coding interaural time differences at low best frequencies in the barn owl. Journal of Physiology (Paris), 2004, 98, 99-112.	2.1	23
30	Microseconds Matter. PLoS Biology, 2010, 8, e1000405.	5.6	23
31	Dipolar extracellular potentials generated by axonal projections. ELife, 2017, 6, .	6.0	23
32	A dendritic model of coincidence detection in the avian brainstem. Neurocomputing, 1999, 26-27, 263-269.	5.9	22
33	Maps of interaural delay in the owl's nucleus laminaris. Journal of Neurophysiology, 2015, 114, 1862-1873.	1.8	22
34	Development of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. , 1998, 41, 176-186.		20
35	Timing is everything: Organization of timing circuits in auditory and electrical sensory systems. Journal of Comparative Neurology, 2004, 472, 131-133.	1.6	20
36	Organization of the auditory brainstem in a lizard, <i>Gekko gecko</i> . I. Auditory nerve, cochlear nuclei, and superior olivary nuclei. Journal of Comparative Neurology, 2012, 520, 1784-1799.	1.6	20

CATHERINE EMILY CARR

#	Article	IF	CITATIONS
37	Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl. Frontiers in Computational Neuroscience, 2013, 7, 151.	2.1	20
38	Linear summation in the barn owl's brainstem underlies responses to interaural time differences. Journal of Neurophysiology, 2013, 110, 117-130.	1.8	19
39	Coupled ears in lizards and crocodilians. Biological Cybernetics, 2016, 110, 291-302.	1.3	19
40	Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem. Brain, Behavior and Evolution, 2017, 90, 131-153.	1.7	19
41	Development of auditory sensitivity in the barn owl. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 843-853.	1.6	18
42	In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds. Journal of the Acoustical Society of America, 2016, 139, 3001-3008.	1.1	17
43	Development of N-methyl-D-aspartate receptor subunits in avian auditory brainstem. Journal of Comparative Neurology, 2007, 502, 400-413.	1.6	16
44	Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl. Frontiers in Computational Neuroscience, 2013, 7, 102.	2.1	16
45	Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl. Journal of Neurophysiology, 2018, 119, 1422-1436.	1.8	13
46	Bony labyrinth morphometry reveals hidden diversity in lungless salamanders (Family) Tj ETQq0 0 0 rgBT /Overlo Evolution; International Journal of Organic Evolution, 2019, 73, 2135-2150.	ock 10 Tf 5 2.3	50 387 Td (Ple 10
47	Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs. Journal of Neuroscience, 2019, 39, 3882-3896.	3.6	10
48	Hearing without a tympanic ear. Journal of Experimental Biology, 2022, 225, .	1.7	10
49	Synaptic Mechanisms of Coincidence Detection. Springer Handbook of Auditory Research, 2012, , 135-164.	0.7	7
50	Cracking an improbable sensory map. Journal of Experimental Biology, 2016, 219, 3829-3831.	1.7	6
51	Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders. Journal of Experimental Biology, 2020, 223, .	1.7	6
52	Signal-to-noise ratio in the membrane potential of the owl's auditory coincidence detectors. Journal of Neurophysiology, 2012, 108, 2837-2845.	1.8	5
53	A circuit for detection of interaural time differences in the nucleus laminaris of turtles. Journal of Experimental Biology, 2017, 220, 4270-4281.	1.7	5
54	Auditory Brainstem Response Wave III is Correlated with Extracellular Field Potentials from Nucleus Laminaris of the Barn Owl. Acta Acustica United With Acustica, 2018, 104, 874-877.	0.8	5

CATHERINE EMILY CARR

#	Article	IF	CITATIONS
55	Bone conduction pathways confer directional cues to salamanders. Journal of Experimental Biology, 2021, 224, .	1.7	4
56	Evolution of Central Pathways. , 2020, , 354-376.		3
57	Strongly directional responses to tones and conspecific calls in the auditory nerve of the Tokay gecko, <i>Gekko gecko</i> . Journal of Neurophysiology, 2021, 125, 887-902.	1.8	2
58	Theoretical Relationship Between Two Measures of Spike Synchrony: Correlation Index and Vector Strength. Frontiers in Neuroscience, 2021, 15, 761826.	2.8	2
59	Dynamics of synaptic extracellular field potentials in the nucleus laminaris of the barn owl. Journal of Neurophysiology, 2019, 121, 1034-1047.	1.8	1
60	Zebrin Expression in the Cerebellum of Two Crocodilian Species. Brain, Behavior and Evolution, 2020, 95, 45-55.	1.7	1
61	Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	1.6	0