Nader Ammar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342152/publications.pdf

Version: 2024-02-01

687363 642732 23 572 13 23 citations h-index g-index papers 23 23 23 358 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Carbon footprint and cost analysis of renewable hydrogen-fuelled ships. Ships and Offshore Structures, 2023, 18, 960-969.	1.9	10
2	Wind assisted propulsion system onboard ships: case study Flettner rotors. Ships and Offshore Structures, 2022, 17, 1616-1627.	1.9	13
3	Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers. Environmental Science and Pollution Research, 2021, 28, 32695-32707.	5.3	25
4	Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel. Environmental Science and Pollution Research, 2021, 28, 37851-37866.	5.3	20
5	Enhancing energy efficiency for new generations of containerized shipping. Ocean Engineering, 2020, 215, 107887.	4.3	24
6	An environmental and economic analysis of emission reduction strategies for container ships with emphasis on the improved energy efficiency indexes. Environmental Science and Pollution Research, 2020, 27, 23342-23355.	5.3	24
7	Performance analysis of supercritical ORC utilizing marine diesel engine waste heat recovery. AEJ - Alexandria Engineering Journal, 2020, 59, 893-904.	6.4	20
8	ENVIRONMENTAL AND COST-EFFECTIVENESS COMPARISON OF DUAL FUEL PROPULSION OPTIONS FOR EMISSIONS REDUCTION ONBOARD LNG CARRIERS. Brodogradnja, 2019, 70, 61-77.	1.9	22
9	An environmental and economic analysis of methanol fuel for a cellular container ship. Transportation Research, Part D: Transport and Environment, 2019, 69, 66-76.	6.8	82
10	Prediction of Shallow Water Resistance for a New Ship Model Using CFD Simulation: Case Study Container Barge. Journal of Ship Production and Design, 2019, 35, 198-206.	0.4	10
11	Energy- and cost-efficiency analysis of greenhouse gas emission reduction using slow steaming of ships: case study RO-RO cargo vessel. Ships and Offshore Structures, 2018, 13, 868-876.	1.9	33
12	Thermodynamic, environmental and economic analysis of absorption air conditioning unit for emissions reduction onboard passenger ships. Transportation Research, Part D: Transport and Environment, 2018, 62, 726-738.	6.8	19
13	Overview of the Green Hydrogen Applications in Marine Power Plants Onboard Ships. International Journal of Multidisciplinary and Current Research, 2018, 6, .	0.1	8
14	Energy Efficiency and Environmental Analysis of the Green-Hydrogen Fueled Slow Speed Marine Diesel Engine. International Journal of Multidisciplinary and Current Research, 2018, 6, .	0.1	1
15	Thermo-Economic Analysis and Environmental Aspects of Absorption Refrigeration Unit Operation Onboard Marine Vehicles: Ro- Pax Vessel Case Study. Polish Maritime Research, 2018, 25, 94-103.	1.9	2
16	Eco-environmental analysis of ship emission control methods: Case study RO-RO cargo vessel. Ocean Engineering, 2017, 137, 166-173.	4.3	80
17	CFD Modeling of Syngas Combustion and Emissions for Marine Gas Turbine Applications. Polish Maritime Research, 2016, 23, 39-49.	1.9	12
18	Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants. Journal of Marine Science and Application, 2016, 15, 95-103.	1.7	10

#	Article	IF	CITATIONS
19	Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications. Journal of Marine Science and Application, 2013, 12, 473-483.	1.7	13
20	Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. International Journal of Naval Architecture and Ocean Engineering, 2013, 5, 529-545.	2.3	47
21	Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells. AEJ - Alexandria Engineering Journal, 2012, 51, 69-75.	6.4	38
22	A comparison between fuel cells and other alternatives for marine electric power generation. International Journal of Naval Architecture and Ocean Engineering, 2011, 3, 141-149.	2.3	51
23	A comparison between fuel cells and other alternatives for marine electric power generation. International Journal of Naval Architecture and Ocean Engineering, 2011, 3, 141-149.	2.3	8