List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342070/publications.pdf Version: 2024-02-01

Δημέρ Γειιλι

#	Article	IF	CITATIONS
1	Hall effect in noncommutative coordinates. Journal of Mathematical Physics, 2002, 43, 4592.	0.5	116
2	Landau diamagnetism in noncommutative space and the nonextensive thermodynamics of Tsallis. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 287, 349-355.	0.9	42
3	Orbital magnetism of a two-dimensional noncommutative confined system. Journal of Physics A, 2001, 34, 10159-10177.	1.6	39
4	Effect of spin-orbit couplings in graphene with and without potential modulation. Physical Review B, 2013, 88, .	1.1	36
5	Quantum Hall effect on higher-dimensional spaces. Nuclear Physics B, 2005, 725, 554-576.	0.9	34
6	TWO COUPLED HARMONIC OSCILLATORS ON NONCOMMUTATIVE PLANE. International Journal of Modern Physics A, 2005, 20, 1515-1529.	0.5	25
7	Tunneling of massive dirac fermions in graphene through time-periodic potential. European Physical Journal B, 2014, 87, 1.	0.6	22
8	Confined Dirac fermions in a constant magnetic field. Physical Review A, 2009, 80, .	1.0	21
9	A noncommutative space approach to confined Dirac fermions in graphene. Journal of Mathematical Physics, 2010, 51, 063522.	0.5	21
10	COHERENT STATES FOR GENERALIZED LAGUERRE FUNCTIONS. Modern Physics Letters A, 2002, 17, 671-682.	0.5	20
11	THERMODYNAMIC PROPERTIES OF A QUANTUM GROUP BOSON GAS GLp,q(2). Modern Physics Letters A, 2002, 17, 701-710.	0.5	19
12	Goos–Hächen like shifts in graphene double barriers. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 30-37.	1.3	17
13	Gate-tunable graphene quantum dot and Dirac oscillator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 773-778.	0.9	16
14	Band tunneling through double barrier in biased graphene bilayer. Materials Research Express, 2017, 4, 025009.	0.8	14
15	Anomalous quantum Hall effect on sphere. Nuclear Physics B, 2008, 804, 361-382.	0.9	13
16	Effective Wess–Zumino–Witten action for edge states of quantum Hall systems on Bergman ball. Nuclear Physics B, 2007, 764, 109-127.	0.9	12
17	QUANTUM HALL EFFECT ON THE FLAG MANIFOLD F ₂ . International Journal of Modern Physics A, 2008, 23, 3129-3154.	0.5	11
18	Tunneling of Graphene Massive Dirac Fermions Through a Double Barrier. Journal of Low Temperature Physics, 2012, 169, 51-69.	0.6	11

#	Article	IF	CITATIONS
19	Electrostatic and magnetic fields in bilayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 149-159.	1.3	11
20	TUNNELING FOR DIRAC FERMIONS IN CONSTANT MAGNETIC FIELD. International Journal of Geometric Methods in Modern Physics, 2010, 07, 909-931.	0.8	10
21	AA-stacked bilayer graphene quantum dots in magnetic field. Materials Research Express, 2016, 3, 055005.	0.8	10
22	Goos–Hächen shifts in AA-stacked bilayer graphene superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 259-267.	1.3	10
23	Entanglement in three coupled harmonic oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126134.	0.9	10
24	QUANTUM HALL DROPLETS ON DISC AND EFFECTIVE WESS–ZUMINO–WITTEN ACTION FOR EDGE STATES. International Journal of Geometric Methods in Modern Physics, 2007, 04, 1187-1204.	0.8	9
25	Transmission through biased graphene strip. Solid State Communications, 2011, 151, 1309-1313.	0.9	9
26	Entanglement in coupled harmonic oscillators studied using a unitary transformation. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P09015.	0.9	9
27	Massless Dirac fermions in an electromagnetic field. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P01021.	0.9	9
28	Position space renormalization group study of the spin-1 random semi-infinite Blume–Capel model. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 689-701.	1.2	9
29	Zero, positive and negative quantum Goos–HÃ ¤ chen shifts in graphene barrier with vertical magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 53-58.	1.3	9
30	Transmission in graphene through time-oscillating linear barrier. European Physical Journal B, 2019, 92, 1.	0.6	9
31	Effect of magnetic field on Goos-HÃ ¤ chen shifts in gaped graphene triangular barrier. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 218-225.	1.3	9
32	Electron scattering in gapped graphene quantum dots. Europhysics Letters, 2018, 123, 28002.	0.7	8
33	Time-dependent Goos-Hächen shifts in gapped graphene. Europhysics Letters, 2020, 129, 27001.	0.7	8
34	Energy levels of graphene magnetic circular quantum dot. Materials Research Express, 2020, 7, 015090.	0.8	8
35	Supersymmetric Embedding of the Quantum Hall Matrix Model. Journal of High Energy Physics, 2004, 2004, 075-075.	1.6	7
36	Chiral limits and effect of light on the Hofstadter butterfly in twisted bilayer graphene. Physical Review B. 2022, 105	1.1	7

#	Article	IF	CITATIONS
37	NONCOMMUTATIVE DESCRIPTION OF SPIN HALL EFFECT. International Journal of Geometric Methods in Modern Physics, 2009, 06, 343-360.	0.8	6
38	Dirac fermions in an inhomogeneous magnetic field. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 015302.	0.7	6
39	Transport Properties Through Double Barrier Structure in Graphene. Journal of Low Temperature Physics, 2012, 168, 40-56.	0.6	6
40	Band structures of symmetrical graphene superlattice with cells of three regions. European Physical Journal B, 2018, 91, 1.	0.6	6
41	Thermodynamic properties of graphene in a magnetic field and Rashba coupling. Physica Scripta, 2019, 94, 105707.	1.2	6
42	Goos-HÃ ¤ chen shifts in graphene with spatially modulated potential. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114010.	1.3	6
43	Gap-tunable of tunneling time in graphene magnetic barrier. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114924.	1.3	6
44	Solution of one-dimensional Dirac equation via Poincaré map. Europhysics Letters, 2011, 95, 17009.	0.7	5
45	Transport Properties for Triangular Barriers in Graphene Nanoribbon. Journal of Low Temperature Physics, 2013, 173, 264-281.	0.6	5
46	Double Barriers and Magnetic Field in Bilayer Graphene. Journal of Low Temperature Physics, 2015, 181, 197-210.	0.6	5
47	Compatibility of symmetric quantization with general covariance in the Dirac equation and spin connections. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2946-2950.	0.9	5
48	Integer quantum Hall effect in graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1514-1516.	0.9	5
49	Periodic barrier structure in AA-stacked bilayer graphene. Materials Research Express, 2016, 3, 065005.	0.8	5
50	Exact Green function for neutral Pauli–Dirac particle with anomalous magnetic momentum in linear magnetic field. Annals of Physics, 2017, 384, 116-127.	1.0	5
51	Multibands tunneling in AAA-stacked trilayer graphene. Superlattices and Microstructures, 2018, 116, 44-53.	1.4	5
52	Time-dependent strain in graphene. European Physical Journal B, 2018, 91, 1.	0.6	5
53	Goos-Hächen shifts in graphene-based linear barrier. Materials Research Express, 2019, 6, 085013.	0.8	5
54	Dynamics and redistribution of entanglement and coherence in three time-dependent coupled harmonic oscillators. International Journal of Geometric Methods in Modern Physics, 2021, 18, 2150120.	0.8	5

#	Article	IF	CITATIONS
55	Transport properties in gapped bilayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114835.	1.3	5
56	Tunneling effect in phosphorene through double barriers. Solid State Communications, 2022, 351, 114777.	0.9	5
57	Electron scattering of inhomogeneous gap in graphene quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 448, 128325.	0.9	5
58	Noncommutativity Parameter and Composite Fermions. Modern Physics Letters A, 2003, 18, 1473-1484.	0.5	4
59	A matrix model for bilayered quantum Hall systems. Journal of Physics A, 2004, 37, 3147-3157.	1.6	4
60	Bipartite and tripartite entanglement of truncated harmonic oscillator coherent states via beam splitters. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 325301.	0.7	4
61	Factorization of Dirac equation in two space dimensions. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450036.	0.8	4
62	Magnetic field effect on strained graphene junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113672.	1.3	4
63	Zitterbewegung effect in graphene with spacially modulated potential. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114193.	1.3	4
64	Electronic properties of graphene quantum ring with wedge disclination. European Physical Journal B, 2021, 94, 1.	0.6	4
65	Density of states analysis of electrostatic confinement in gapped graphene. Solid State Communications, 2021, 333, 114335.	0.9	4
66	Effect of strain on band engineering in gapped graphene. European Physical Journal B, 2021, 94, 1.	0.6	4
67	Fermions in graphene with magnetic field and time-oscillating potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 447, 128288.	0.9	4
68	Fractional Quantum Hall Effect and (2 + 1)-Dimensional Quantum Electrodynamics. International Journal of Theoretical Physics, 1998, 37, 2751-2755.	0.5	3
69	D-DIMENSIONAL IDEAL QUANTUM GASES IN A Arn+Br-n POTENTIAL. Modern Physics Letters B, 2003, 17, 1321-1330.	1.0	3
70	FRACTIONAL QUANTUM HALL STATES IN GRAPHENE. International Journal of Geometric Methods in Modern Physics, 2010, 07, 143-164.	0.8	3
71	Factorization of the Dirac equation and a graphene quantum dot. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P10027.	0.9	3
72	Path integral for confined Dirac fermions in a constant magnetic field. International Journal of Modern Physics A, 2015, 30, 1550174.	0.5	3

#	Article	IF	CITATIONS
73	Energy levels of an ideal quantum ring in AA-stacked bilayer graphene. Materials Research Express, 2017, 4, 055603.	0.8	3
74	Measuring space deformation via graphene under constraints. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 385, 126964.	0.9	3
75	Tunneling in an anisotropic cubic Dirac semi-metal. Annals of Physics, 2021, 432, 168563.	1.0	3
76	Instability of Meissner Differential Equation and Its Relation with Photon Excitations and Entanglement in a System of Coupled Quantum Oscillators. Quantum Reports, 2021, 3, 684-702.	0.6	3
77	Strain effect on Goos–Hächen shifts and group delay time in gapped graphene barrier. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 439, 128136.	0.9	3
78	Quantum Hall Effect. International Journal of Theoretical Physics, 1998, 37, 2187-2191.	0.5	2
79	THERMODYNAMICAL PROPERTIES OF HALL SYSTEMS. International Journal of Geometric Methods in Modern Physics, 2008, 05, 297-317.	0.8	2
80	Transmission in graphene through time periodic double barrier potential. Materials Research Express, 2017, 4, 035002.	0.8	2
81	Controllable Goos-HÃ ¤ chen shift in graphene triangular double barrier. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 266-272.	1.3	2
82	Purity temperature dependency for coupled harmonic oscillator. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 093101.	0.9	2
83	Tunneling Through a Multiâ€Unit Graphene Superlattice. Physica Status Solidi (B): Basic Research, 2019, 256, 1900172.	0.7	2
84	Tunneling through Double Electrostatic Barriers in Strained Graphene. Physica Status Solidi (B): Basic Research, 2020, 257, 1900414.	0.7	2
85	Energy levels of magnetic quantum dots in gapped graphene. European Physical Journal B, 2021, 94, 1.	0.6	2
86	Magnetic field effect on the dynamics of entanglement for time-dependent harmonic oscillator. International Journal of Geometric Methods in Modern Physics, 2022, 19, .	0.8	2
87	Tuning gap in corrugated graphene with spin dependence. Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115227.	1.3	2
88	REALIZATION OF SUPERSYMMETRIC SINE ALGEBRA AND QUANTUM SUPERALGEBRA Uq(sl(2/1)). Modern Physics Letters A, 1999, 14, 2253-2258.	0.5	1
89	Uq[sl(2)] Quantum Algebra in Quantum Hall Effect. International Journal of Theoretical Physics, 1999, 38, 1893-1899.	0.5	1
90	ELECTROMAGNETIC EXCITATIONS OF A _n QUANTUM HALL DROPLETS. International Journal of Modern Physics A, 2010, 25, 3675-3701.	0.5	1

#	Article	IF	CITATIONS
91	The magnetism of two coupled harmonic oscillators. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P01012.	0.9	1
92	Symplectic fluctuations for electromagnetic excitations of Hall droplets. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P07017.	0.9	1
93	A MATRIX MODEL FOR \$u_{k_1k_2} = {k_1+k_2 over k_1 k_2}\$ FRACTIONAL QUANTUM HALL STATES. International Journal of Geometric Methods in Modern Physics, 2011, 08, 557-586.	0.8	1
94	Graphene nanoribbon in sharply localized magnetic fields. European Physical Journal B, 2013, 86, 1.	0.6	1
95	Confined Dirac particles in a constant and tilted magnetic field. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550062.	0.8	1
96	Energy Levels of Quantum Ring in ABA-Stacked Trilayer Graphene. Journal of Low Temperature Physics, 2019, 197, 10-22.	0.6	1
97	Fano resonances in gapped graphene subject to an oscillating potential barrier and magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114502.	1.3	1
98	Diamagnetism of confined Dirac fermions in disordered graphene. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 275001.	0.7	1
99	Scattering in gapped graphene quantum dot with magnetic flux. Physica Scripta, 2020, 95, 105805.	1.2	1
100	Tunneling effect in gapped graphene disk in magnetic flux and electrostatic potential. Physica Scripta, 2021, 96, 125863.	1.2	1
101	Band structures of hybrid graphene quantum dots with magnetic flux. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 426, 127898.	0.9	1
102	Gradedq-pseudo-differential operators and supersymmetric algebras. Journal of Physics A, 2002, 35, 3697-3702.	1.6	0
103	SECOND VIRIAL COEFFICIENT FOR NONCOMMUTATIVE SPACE. Modern Physics Letters A, 2003, 18, 927-935.	0.5	0
104	Periodic structures with Rashba interaction in a magnetic field. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 035205.	0.7	0
105	ELECTROMAGNETIC EXCITATIONS OF HALL SYSTEMS ON FOUR-DIMENSIONAL SPACE. International Journal of Geometric Methods in Modern Physics, 2011, 08, 1465-1486.	0.8	0
106	A confined system with Rashba coupling in a constant magnetic field. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 505306.	0.7	0
107	Transmission and Goos-Hächen like shifts through a graphene double barrier in an inhomogeneous magnetic field. European Physical Journal B, 2016, 89, 1.	0.6	0
108	Thermodynamics Properties of Confined Particles on Noncommutative Plane. Communications in Theoretical Physics, 2019, 71, 1047.	1.1	0

#	Article	IF	CITATIONS
109	Low energy consequences of loop quantum gravity. International Journal of Geometric Methods in Modern Physics, 2021, 18, 2150035.	0.8	0
110	Klein Tunneling through Double Barrier in ABCâ€Trilayer Graphene. Annalen Der Physik, 0, , 2100513.	0.9	0
111	iwo band tunneling for a <mmi:math xmins:mmi="http://www.w3.org/1998/Math/MathML<br">display="inline" id="d1e2264" altimg="si375.svg"><mml:mrow><mml:mi>p</mml:mi><mml:mi>n</mml:mi><mml:mi>pjunction in tetralayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140,</mml:mi></mml:mrow></mmi:math>	> ⊲µanml:m	at b >
112	Quantum tunneling in graphene Corbino disk in a solenoid magnetic potential with wedge disclination. Physica B: Condensed Matter, 2022, , 413904.	1.3	0

disclination. Thysica b. condensed Matter, 202