
Mark A Krasnow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3342067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Distinct Inflammatory Programs and Biomarkers in Systemic Juvenile Idiopathic Arthritis and Related Lung Disease by Serum Proteome Analysis. Arthritis and Rheumatology, 2022, 74, 1271-1283.	5.6	24
2	The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, 2022, 376, eabl4896.	12.6	289
3	Dissecting alveolar patterning and maintenance at singleâ€cell resolution. FASEB Journal, 2022, 36, .	0.5	0
4	Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets. Nature Computational Science, 2022, 2, 317-330.	8.0	13
5	Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature, 2022, 606, 739-746.	27.8	38
6	RNA splicing programs define tissue compartments and cell types at single-cell resolution. ELife, 2021, 10, .	6.0	24
7	Adult stem cells and regenerative medicine—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 27-36.	3.8	43
8	Capillary cell-type specialization in the alveolus. Nature, 2020, 586, 785-789.	27.8	231
9	A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 2020, 583, 590-595.	27.8	683
10	A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature, 2020, 587, 619-625.	27.8	963
11	Brain Circuit of Claustrophobia-like Behavior in Mice Identified by Upstream Tracing of Sighing. Cell Reports, 2020, 31, 107779.	6.4	20
12	New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540.	1.1	119
13	Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell, 2019, 179, 1129-1143.e23.	28.9	265
14	Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell, 2019, 179, 403-416.e23.	28.9	148
15	Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science, 2018, 359, 1118-1123.	12.6	557
16	Chang et al. reply. Nature, 2018, 561, E41-E41.	27.8	6
17	Profile of an unknown airway cell. Nature, 2018, 560, 313-314.	27.8	6
18	The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health. Genetics, 2017, 206. 651-664.	2.9	58

Mark A Krasnow

#	Article	IF	CITATIONS
19	Breathing control center neurons that promote arousal in mice. Science, 2017, 355, 1411-1415.	12.6	176
20	MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis. Cell Reports, 2017, 20, 1533-1542.	6.4	90
21	Developmental origin of lung macrophage diversity. Development (Cambridge), 2016, 143, 1318-27.	2.5	199
22	The peptidergic control circuit for sighing. Nature, 2016, 530, 293-297.	27.8	168
23	Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes?. Journal of Thoracic Oncology, 2016, 11, 453-474.	1.1	156
24	Subcellular Trafficking of FGF Controls Tracheal Invasion of Drosophila Flight Muscle. Cell, 2015, 160, 313-323.	28.9	29
25	Formation of a Neurosensory Organ by Epithelial Cell Slithering. Cell, 2015, 163, 394-405.	28.9	100
26	Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature, 2015, 527, 240-244.	27.8	225
27	Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 2014, 509, 371-375.	27.8	1,260
28	Progenitor Outgrowth from the Niche in <i>Drosophila</i> Trachea Is Guided by FGF from Decaying Branches. Science, 2014, 343, 186-189.	12.6	32
29	Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nature Communications, 2014, 5, 3923.	12.8	101
30	Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 2014, 507, 190-194.	27.8	800
31	Defining a mesenchymal progenitor niche at single-cell resolution. Science, 2014, 346, 1258810.	12.6	128
32	High Quality Genome-Wide Genotyping from Archived Dried Blood Spots without DNA Amplification. PLoS ONE, 2013, 8, e64710.	2.5	25
33	Radial Construction of an Arterial Wall. Developmental Cell, 2012, 23, 482-493.	7.0	82
34	Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium. PLoS ONE, 2012, 7, e52886.	2.5	37
35	A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System. PLoS Genetics, 2011, 7, e1002087.	3.5	66
36	Coronary arteries form by developmental reprogramming of venous cells. Nature, 2010, 464, 549-553.	27.8	476

Mark A Krasnow

#	Article	IF	CITATIONS
37	The branching programme of mouse lung development. Nature, 2008, 453, 745-750.	27.8	701
38	Dual Origin of Tissue-Specific Progenitor Cells in <i>Drosophila</i> Tracheal Remodeling. Science, 2008, 321, 1496-1499.	12.6	71
39	Social interactions among epithelial cells during tracheal branching morphogenesis. Nature, 2006, 441, 746-749.	27.8	207
40	Drosophila talin and integrin genes are required for maintenance of tracheal terminal branches and luminal organization. Development (Cambridge), 2006, 133, 2383-2393.	2.5	64
41	A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nature Cell Biology, 2001, 3, 848-851.	10.3	77
42	Genetic Control of Branching Morphogenesis. Science, 1999, 284, 1635-1639.	12.6	468
43	Oxygen Regulation of Airway Branching in Drosophila Is Mediated by Branchless FGF. Cell, 1999, 99, 211-220.	28.9	227
44	stumps, a Drosophila Gene Required for Fibroblast Growth Factor (FGF)-directed Migrations of Tracheal and Mesodermal Cells. Genetics, 1999, 152, 307-318.	2.9	79
45	sprouty Encodes a Novel Antagonist of FGF Signaling that Patterns Apical Branching of the Drosophila Airways. Cell, 1998, 92, 253-263.	28.9	708
46	branchless Encodes a Drosophila FGF Homolog That Controls Tracheal Cell Migration and the Pattern of Branching. Cell, 1996, 87, 1091-1101.	28.9	586
47	Intercellular signalling in Drosophila segment formation reconstructed in vitro. Nature, 1993, 363, 549-552.	27.8	56