
Maxim Sukharev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3341737/publications.pdf Version: 2024-02-01

MAXIM SHKHADEV

#	Article	IF	CITATIONS
1	Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film. Physical Review Letters, 2012, 109, 073002.	7.8	123
2	Phase and Polarization Control as a Route to Plasmonic Nanodevices. Nano Letters, 2006, 6, 715-719.	9.1	113
3	Optics of exciton-plasmon nanomaterials. Journal of Physics Condensed Matter, 2017, 29, 443003.	1.8	73
4	Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions. Physical Review A, 2011, 84, .	2.5	68
5	Laser Field Alignment of Organic Molecules on Semiconductor Surfaces: Toward Ultrafast Molecular Switches. Physical Review Letters, 2008, 101, 208303.	7.8	61
6	Nanoparticle Spectroscopy:  Birefringence in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3252-3260.	3.1	52
7	Transport and optical response of molecular junctions driven by surface plasmon polaritons. Physical Review B, 2010, 81, .	3.2	52
8	Coherent control of light propagation via nanoparticle arrays. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S283-S298.	1.5	43
9	Ultrafast Energy Transfer between Molecular Assemblies and Surface Plasmons in the Strong Coupling Regime. ACS Nano, 2014, 8, 807-817.	14.6	43
10	Light-induced current in molecular junctions: Local field and non-Markov effects. Physical Review B, 2011, 83, .	3.2	40
11	Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons. Physical Review B, 2007, 76, .	3.2	27
12	Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy. Physical Review A, 2018, 97, .	2.5	27
13	Second Harmonic Generation from a Single Plasmonic Nanorod Strongly Coupled to a WSe ₂ Monolayer. Nano Letters, 2021, 21, 1599-1605.	9.1	27
14	Coherent control approaches to light guidance in the nanoscale. Journal of Chemical Physics, 2006, 124, 144707.	3.0	25
15	Ehrenfest+R dynamics. I. A mixed quantum–classical electrodynamics simulation of spontaneous emission. Journal of Chemical Physics, 2019, 150, 044102.	3.0	24
16	Stimulated Raman adiabatic passage as a route to achieving optical control in plasmonics. Physical Review A, 2012, 86, .	2.5	23
17	Numerical Calculations of Radiative and Non-Radiative Relaxation of Molecules Near Metal Particles. Journal of Physical Chemistry C, 2014, 118, 10545-10551.	3.1	22
18	Optical Properties of Metal Tips for Tip-Enhanced Spectroscopies. Journal of Physical Chemistry A, 2009, 113, 7508-7513.	2.5	21

MAXIM SUKHAREV

#	Article	IF	CITATIONS
19	Dipole-Induced Electromagnetic Transparency. Physical Review Letters, 2014, 113, 163603.	7.8	21
20	Molecular nanoplasmonics: Self-consistent electrodynamics in current-carrying junctions. Physical Review B, 2012, 86, .	3.2	20
21	Optimal design of nanoplasmonic materials using genetic algorithms as a multiparameter optimization tool. Journal of Chemical Physics, 2008, 129, 064706.	3.0	17
22	Plasmon enhanced second harmonic generation by periodic arrays of triangular nanoholes coupled to quantum emitters. Journal of Chemical Physics, 2020, 152, 094706.	3.0	17
23	Theoretical analysis of dipole-induced electromagnetic transparency. Physical Review A, 2015, 91, .	2.5	15
24	Effects of exciton-plasmon strong coupling on third harmonic generation by two-dimensional WS2 at periodic plasmonic interfaces. Journal of Chemical Physics, 2018, 148, .	3.0	14
25	Light trapping and guidance in plasmonic nanocrystals. Journal of Chemical Physics, 2007, 126, 204702.	3.0	12
26	Non-Hermitian wave packet approximation of Bloch optical equations. Journal of Chemical Physics, 2013, 138, 024108.	3.0	12
27	Ehrenfest+R dynamics. II. A semiclassical QED framework for Raman scattering. Journal of Chemical Physics, 2019, 150, 044103.	3.0	12
28	Wavelength and Polarization Dependence of Second-Harmonic Responses from Gold Nanocrescent Arrays. Journal of Physical Chemistry C, 2020, 124, 20424-20435.	3.1	12
29	Surface plasmon polaritons in periodic arrays of V-shaped grooves strongly coupled to quantum emitters. Physical Review B, 2015, 92, .	3.2	10
30	Optical Response of Hybrid Plasmon–Exciton Nanomaterials in the Presence of Overlapping Resonances. ACS Photonics, 2015, 2, 935-941.	6.6	10
31	Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions. Physical Review B, 2017, 95, .	3.2	10
32	Molecular Plasmonics: Strong Coupling at the Low Molecular Density Limit. Journal of Physical Chemistry C, 2017, 121, 14819-14825.	3.1	10
33	Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling. Scientific Reports, 2017, 7, 4107.	3.3	10
34	Control of optical properties of hybrid materials with chirped femtosecond laser pulses under strong coupling conditions. Journal of Chemical Physics, 2014, 141, 084712.	3.0	9
35	Harmonic Generation by Metal Nanostructures Optically Coupled to Two-Dimensional Transition-Metal Dichalcogenide. Journal of Physical Chemistry C, 2019, 123, 6898-6904.	3.1	9
36	Plasmon transmission through excitonic subwavelength gaps. Journal of Chemical Physics, 2016, 144, 144703.	3.0	8

MAXIM SUKHAREV

#	Article	IF	CITATIONS
37	A Necessary Trade-off for Semiclassical Electrodynamics: Accurate Short-Range Coulomb Interactions versus the Enforcement of Causality?. Journal of Physical Chemistry Letters, 2018, 9, 5955-5961.	4.6	8
38	Energy Transfer and Interference by Collective Electromagnetic Coupling. Nano Letters, 2019, 19, 5790-5795.	9.1	8
39	Second harmonic generation by strongly coupled exciton–plasmons: The role of polaritonic states in nonlinear dynamics. Journal of Chemical Physics, 2021, 154, 244701.	3.0	7
40	Second-harmonic generation in nonlinear plasmonic lattices enhanced by quantum emitter gain medium. Journal of Chemical Physics, 2021, 154, 084703.	3.0	5
41	Strong coupling between an inverse bowtie Nano-Antenna and a J-aggregate. Journal of Colloid and Interface Science, 2022, 610, 438-445.	9.4	5
42	Coherent phase control of internal conversion in pyrazine. Journal of Chemical Physics, 2015, 142, 144311.	3.0	4
43	Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields. Journal of Chemical Physics, 2016, 144, 154109.	3.0	4
44	Coupling, lifetimes, and "strong coupling―maps for single molecules at plasmonic interfaces. Journal of Chemical Physics, 2022, 156, 154303.	3.0	4
45	Photon echo in exciton-plasmon nanomaterials: A time-dependent signature of strong coupling. Journal of Chemical Physics, 2017, 146, 084704.	3.0	3
46	Collective effects in subwavelength hybrid systems: a numerical analysis. Molecular Physics, 2015, 113, 392-396.	1.7	2
47	Modeling optical coupling of plasmons and inhomogeneously broadened emitters. Journal of Chemical Physics, 2019, 150, 124112.	3.0	1
48	Second Harmonic Generation from a Single Plasmonic Nanorod Strongly Coupled to a WSe2 Monolayer. , 2021, , .		1
49	High Yield Synthesis and Quadratic Nonlinearities of Gold Nanoprisms in Solution: The Role of Corner Sharpness. Israel Journal of Chemistry, 2023, 63, .	2.3	1
50	Linear Optical Properties of Periodic Hybrid Materials at Oblique Incidence: A Numerical Approach. , 2015, , 149-164.		0
51	Plasmonics. , 2012, , 279-299.		0